OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 33 — Nov. 20, 2010
  • pp: 6504–6511

Composite quarter-wave systems with adjustable parameters

Natalia Kundikova, Ivan Popkov, and Anastasia Popkova  »View Author Affiliations

Applied Optics, Vol. 49, Issue 33, pp. 6504-6511 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of composite quarter-wave system with adjustable parameters has been proposed and investigated experimentally. The first system is a quarter-waveplate with adjustable optical activity and the second system is a quarter-wave plate with an adjustable axis orientation.

© 2010 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: June 28, 2010
Revised Manuscript: October 16, 2010
Manuscript Accepted: October 19, 2010
Published: November 19, 2010

Natalia Kundikova, Ivan Popkov, and Anastasia Popkova, "Composite quarter-wave systems with adjustable parameters," Appl. Opt. 49, 6504-6511 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Yu. A. Ushenko, A. P. Peresunko, and B. A. Baku, “A new method of mueller-matrix diagnostics and differentiation of early oncological changes of the skin derma,” Adv. Opt. Technol. 2010, 1–9 (2010). [CrossRef]
  2. D. A. VanNasdale, A. E. Elsner, A. Weber, M. Miura, and B. P. Haggerty, “Determination of foveal location using scanning laser polarimetry,” J. Vision 9, 1–17 (2009). [CrossRef]
  3. J. M. Bueno, C. J. Cookson, J. J. Hunter, M. L. Kisilak, and M. C. W. Campbell, “Depolarization properties of the optic nerve head: the effect of age,” Ophthal. Physiol. Opt. 29, 247–255(2009). [CrossRef]
  4. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). [CrossRef] [PubMed]
  5. Q. Zhou and R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43, 2221–2228 (2002). [PubMed]
  6. S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express 17, 14418–14425 (2009). [CrossRef] [PubMed]
  7. C. C. Jung and J. Stumpe, “Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films,” Appl. Phys. B 80, 231–238(2005). [CrossRef]
  8. G. Badano, A. Million, B. Canava, P. Tran-Van, and A. Etcheberry, “Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry,” J. Electron. Mater. 36, 1077–1084 (2007). [CrossRef]
  9. M. L. Demidov and H. Balthasar, “Spectro-polarimetric observations of solar magnetic fields and the SOHO/MDI calibration issue,” Sol. Phys. 260, 261–270 (2009). [CrossRef]
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  11. D. J. Diner, A. Davis, B. Hancock, G. Gutt, R. A. Chipman, and B. Cairns, “Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing,” Appl. Opt. 46, 8428–8445 (2007). [CrossRef] [PubMed]
  12. D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008). [CrossRef]
  13. Z. Zhuang, S.-W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24, 694–697 (1999). [CrossRef]
  14. M. Martinelli and R. A. Chipman, “Endless polarization control algorithm using adjustable linear retarders with fixed axes,” J. Lightwave Technol. 21, 2089–2096 (2003). [CrossRef]
  15. A. Safrani and I. Abdulhalim, “Liquid-crystal polarization rotator and a tunable polarizer,” Opt. Lett. 34, 1801–1803(2009). [CrossRef] [PubMed]
  16. O. Aharon and I. Abdulhalim, “Liquid crystal wavelength-independent continuous polarization rotator,” Opt. Eng. 49, 034002 (2010). [CrossRef]
  17. R. S. Seymour, S. M. Rees, J. Staromlynska, J. Richards, and P. Wilson, “Design considerations for a liquid crystal tuned Lyot filter for laser bathymetry,” Opt. Eng. 33, 915–923 (1994). [CrossRef]
  18. P. A. Searcy, P. Wagner, R. A. Ramsey, J. Powell, and T. G. Baur, “Tunable liquid crystal filters including variable FWHM control,” Proc. SPIE 7672, 76720F (2010). [CrossRef]
  19. O. Aharon and I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009). [CrossRef] [PubMed]
  20. R. C. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  21. R. C. Jones, “New calculus for the treatment of optical systems. VIII. Electromagnetic theory,” J. Opt. Soc. Am. 46, 126–131 (1956). [CrossRef]
  22. W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press1962).
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  24. S. Huard, Polarization of Light (Wiley, 1997).
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).
  26. S. N. Savenkov, V. V. Marienko, and E. A. Oberemok, “Generalized matrix equivalence theorem for polarization theory,” Phys. Rev. E 74, 056607 (2006). [CrossRef]
  27. H. Hurwitz and R. C. Jones, “A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems,” J. Opt. Soc. Am. 31, 493–499 (1941). [CrossRef]
  28. M. Ya. Darsht, I. V. Goltser, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable half-wave plate,” Appl. Opt. 34, 3658–3661 (1995). [CrossRef] [PubMed]
  29. I. V. Goltser, M. Ya. Darsht, N. D. Kundikova, and B. Ya. Zel’dovich, “An adjustable quarterwave plate,” Opt. Commun. 97, 291–294 (1993). [CrossRef]
  30. I. V. Gol’tser, M. Ya. Darsht, B. Ya. Zel’dovich, N. D. Kundikova, L. F. Rogacheva, “Quarter-wave plate tunable in a wide wavelength range,” Quantum Electron. 25, 187–190 (1995). [CrossRef]
  31. V. V. Chirkov, N. D. Kundikova, and L. F. Rogacheva, “An adjustable complex phase retarder without optical activity,” Proc. Chelyabinsk Scientific Center 1, 15–18 (2001).
  32. S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, “Eigenanalysis of dichroic, birefringent, and degenerate polarization elements: a Jones-calculus study,” Appl. Opt. 46, 6700–6709(2007). [CrossRef] [PubMed]
  33. S. N. Savenkov, Y. A. Oberemok, and V. V. Yakubchak, “Matrix model of inhomogeneous medium with circular birefringence in single scattering case,” Quantum Electron. Optoelectron. 12, 199–203 (2009).
  34. Meadowlark Optics, “Polarization Rotator,” http://www.meadowlark.com/products/lcPolarizationRotator.php.
  35. W. C. Davis, “Simplified wave plate measurements,” Appl. Opt. 20, 2879–2880 (1981). [CrossRef] [PubMed]
  36. N. D. Kundikova and A. M. Suvorova, “Tunable quarter-wave plate for determining light wavelength,” Tech. Phys. Lett. 35, 63–66 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited