OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 33 — Nov. 20, 2010
  • pp: 6537–6545

Two-dimensional scattering from a multilayered periodic structure of arbitrary shapes

Maurice Sesay and Mitsuhiro Yokota  »View Author Affiliations


Applied Optics, Vol. 49, Issue 33, pp. 6537-6545 (2010)
http://dx.doi.org/10.1364/AO.49.006537


View Full Text Article

Enhanced HTML    Acrobat PDF (1315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical approach is presented to analyze the two-dimensional scattering properties from a multilayered periodic dielectric structure of an arbitrary number of arbitrarily shaped unit cells. The approach is enhanced by the periodic moment method, the lattice sums technique, and the Poisson summation formula. The matrix element’s evaluation accounts for the overall coupling between layers. The choosing of lattice parameters allows designs for a wide range of applications, including the electromagnetic bandgap filtering of an E-polarized wave, which is simulated and reported here.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(290.5850) Scattering : Scattering, particles
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(230.5298) Optical devices : Photonic crystals
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 9, 2010
Revised Manuscript: September 18, 2010
Manuscript Accepted: October 19, 2010
Published: November 19, 2010

Citation
Maurice Sesay and Mitsuhiro Yokota, "Two-dimensional scattering from a multilayered periodic structure of arbitrary shapes," Appl. Opt. 49, 6537-6545 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-33-6537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Yasumoto, ed., Electromagnetic Theory and Applications for Photonic Crystal (Taylor & Francis, 2006).
  2. Y. W. Kong and S. T. Chew, “EBG-based dual mode resonator filter,” IEEE Microw. Wireless Compon. Lett. 14, 124–126(2004). [CrossRef]
  3. R. Coccioli, F.-R. Yang, K.-P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microw. Theory Tech. 47, 2123–2130 (1999). [CrossRef]
  4. S. Y. Lin and J. G. Fleming, “A three-dimensional optical photonic crystal,” J. Lightwave Technol. 17, 1944–1947 (1999). [CrossRef]
  5. R. C. Hall, R. Mittra, and K. M. Mitzner, “Analysis of multilayered periodic structures using generalized scattering matrix theory,” IEEE Trans. Antennas Propag. 36, 511–517 (1988). [CrossRef]
  6. T. S. Chu and T. Itoh, “Generalized scattering matrix method for analysis of cascaded and offset microstrip step discontinuities,” IEEE Trans. Microw. Theory Tech. 34, 280–284 (1986). [CrossRef]
  7. J. Lech and R. Mazur, “Electromagnetic curtain effect and tunneling properties of multilayered periodic structures,” Antennas Wirel. Propag. Lett. 7, 201–205 (2008). [CrossRef]
  8. K. Yasumoto and T. Kushta, “Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique,” IEEE Trans. Antennas Propag. 52, 2603–2611 (2004). [CrossRef]
  9. G. Pelosi, A. Cocchi, and A. Monorchio, “A hybrid FEM-based procedure for the scattering from photonic crystals illuminated by a Gaussian beam,” IEEE Trans. Antennas Propag. 48, 973–980 (2000). [CrossRef]
  10. E. Popov and B. Bozhkov, “Differential method applied for photonic crystals,” Appl. Opt. 39, 4926–4933 (2000). [CrossRef]
  11. M. Koshiba, Y. Tsuji, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” J. Lightwave Technol. 18, 102–110 (2000). [CrossRef]
  12. H. Ikuno and Y. Naka, “Finite-difference time-domain method applied to photonic crystals,” in Electromagnetic Theory and Applications for Photonic Crystals, K.Yasumoto, ed. (Taylor & Francis, 2006), pp. 401–444.
  13. A. Coves, B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, “Full-wave analysis of dielectric frequency-selective surfaces using a vectorial modal method,” IEEE Trans. Antennas Propag. 52, 2091–2099 (2004). [CrossRef]
  14. R. Harrington, Field Computation by Moment Methods (IEEE, 1993). [CrossRef]
  15. M. Yokota and M. Sesay, “Two-dimensional scattering of a plane wave from a periodic array of dielectric cylinders with arbitrary shape,” J. Opt. Soc. Am. A 25, 1691–1696 (2008). [CrossRef]
  16. K. Yasumoto and K. Yoshitomi, “Efficient calculation of lattice sums for free-space periodic green’s function,” IEEE Trans. Antennas Propag. 47, 1050–1055 (1999). [CrossRef]
  17. R. Lampe, P. Klock, and P. Mayes, “Integral transforms useful for the accelerated summation of periodic, free-space Green’s functions,” IEEE Trans. Microw. Theory Tech. 33, 734–736(1985). [CrossRef]
  18. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1991).
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall1983).
  20. Y. Saad and M. H. Schultz, “GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). [CrossRef]
  21. A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics Media (IEEE, 1997). [CrossRef]
  22. W. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited