OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 34 — Dec. 1, 2010
  • pp: 6637–6644

Determination of photophysical parameters of red fluorescent protein mRFP1 under ultraviolet excitation by methods of laser fluorimetry

Alexandr A. Banishev, Evgeny A. Shirshin, and Victor V. Fadeev  »View Author Affiliations


Applied Optics, Vol. 49, Issue 34, pp. 6637-6644 (2010)
http://dx.doi.org/10.1364/AO.49.006637


View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate photophysical processes that take place in macromolecules of a fluorescent protein mRFP1 under UV excitation [when the energy transfer in a localized donor–acceptor (LDA) pair, which is presented in the molecules of the protein, becomes apparent]. We used a special approach based on the fluorescence laser spectroscopy technique. The energy transfer rates in LDA pairs and photophysical parameters of fluorophores (chromophores) of three spectral forms, which coexist in the ensemble of the macromolecules of this protein, were determined under pulse UV laser excitation.

© 2010 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Spectroscopy

History
Original Manuscript: May 21, 2010
Revised Manuscript: October 17, 2010
Manuscript Accepted: October 29, 2010
Published: November 30, 2010

Citation
Alexandr A. Banishev, Evgeny A. Shirshin, and Victor V. Fadeev, "Determination of photophysical parameters of red fluorescent protein mRFP1 under ultraviolet excitation by methods of laser fluorimetry," Appl. Opt. 49, 6637-6644 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-34-6637


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Shimomura, The Discovery of Green Fluorescent Protein (Wiley, 1998).
  2. B. W. Hicks, Green Fluorescent Protein: Applications and Protocols (Humana, 2002). [CrossRef]
  3. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994). [CrossRef] [PubMed]
  4. B. Lounis, J. Deich, F. I. Rosell, Steven G. Boxer, and W. E. Moerner, “Photophysics of DsRed, a red fluorescent protein, from the ensemble to the single-molecule level,” J. Phys. Chem. B 105, 5048–5054 (2001). [CrossRef]
  5. R. Steinmeyer, A. Noskov, C. Krasel, I. Weber, C. Dees, and G. S. Harms, “Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization,” J. Fluorescence 15, 707–721 (2005). [CrossRef]
  6. L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem. 47, 819–846 (1978). [CrossRef] [PubMed]
  7. R. E. Campbell, O. Tour, A. E. Palmer, P. A. Steinbach, G. S. Baird, D. A. Zacharias, and R. Y. Tsien, “A monomeric red fluorescent protein,” Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002). [CrossRef] [PubMed]
  8. Protein Data Bank, ID 1 g7 k, www.pdb.org.
  9. V. V. Verkhusha, D. M. Chudakov, N. G. Gurskaya, S. Lukyanov, and K. A. Lukyanov, “Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins,” Chem. Biol. 11, 845–854 (2004). [CrossRef] [PubMed]
  10. M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, “Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer,” Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996). [CrossRef] [PubMed]
  11. A. A. Pakhomov, N. Yu. Martynova, N. G. Gurskaya, T. A. Balashova, and V. I. Martynov, “Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.,” Biochem. 69, 901–908 (2004). [CrossRef]
  12. S. Habuchi, M. Cotlet, T. Gensch, T. Bednarz, S. Haber-Pohlmeier, J. Rozenski, G. Dirix, J. Michiels, J. Vanderleyden, J. Heberle, F. C. Schryver, and J. Hofkens, “Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed,” J. Am. Chem. Soc. 127, 8977–8984 (2005). [CrossRef] [PubMed]
  13. A. A. Banishev, E. P. Vrzheshch, D. V. Dmitrienko, V. L. Drutsa, D. V. Maslov, V. Z. Pashchenko, E. A. Shirshin, P. V. Vrzheshch, and V. V. Fadeev, “A method for determining the individual optical characteristics of posttranslational fluorescent forms of fluorescent proteins with the use of nonlinear laser fluorimetry,” Biofizika 52, 792–798 (2007), in Russian. [PubMed]
  14. A. A. Banishev, E. P. Vrzheshch, and E. A. Shirshin, “Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1,” IEEE J. Quantum Electron. 39, 273–278 (2009). [CrossRef]
  15. V. V. Fadeev, T. A. Dolenko, E. M. Filippova, and V. V. Chubarov, “Saturation spectroscopy as a method for determining the photophysical parameters of complicated organic compounds,” Opt. Commun. 166, 25–33 (1999). [CrossRef]
  16. A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Laser fluorimetry of proteins containing one and two tryptophan residues,” Laser Phys. 18, 861–867 (2008). [CrossRef]
  17. A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A nanosecond laser fluorimeter,” Instrum. Exp. Tech. 49, 430–434 (2006). [CrossRef]
  18. E. A. Shirshin, A. A. Banishev, and V. V. Fadeev, “Localized donor-acceptor pairs of fluorophores: determination of energy transfer rate using nonlinear fluorimetry,” JETP Lett. 89, 475–478 (2009). [CrossRef]
  19. D. N. Klyshko and V. V. Fadeev, “Remote determination of the admixture concentrations in water by the method of laser spectroscopy using Raman scattering as an internal standard,” Sov. Phys. Dokl. 23, 55–57 (1978).
  20. V. Z. Paschenko, R. P. Evstigneeva, V. V. Gorokhov, V. N. Luzgina, V. B. Tusov, and A. B. Rubin, “Photophysical properties of carborane-containing derivatives of 5,10,15,20-tetra(p-aminophenyl)porphyrin,” J. Photochem. Photobiol. B 54, 162–167 (2000). [CrossRef] [PubMed]
  21. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (North-Holland, 1982).
  22. A. A. Banishev, E. A. Shirshin, and V. V. Fadeev, “Determination of photophysical parameters of tryptophan molecules by methods of laser fluorimetry,” IEEE J. Quantum Electron. 38, 77–81 (2008). [CrossRef]
  23. G. Srinivas, A. Yethiraj, and B. Bagchi, “FRET by FET and dynamics of polymer folding,” J. Phys. Chem. B 105, 2475–2478 (2001). [CrossRef]
  24. K. Truong and M. Ikura, “The use of FRET imaging microscopy to detect protein—protein interactions and protein conformational changes in vivo,” Curr. Opin. Struct. Biol. 11, 573–578 (2001). [CrossRef]
  25. D. V. Maslov, E. E. Ostroumov, and V. V. Fadeev, “Saturation fluorimetry of complex organic compounds with a high local concentration of fluorophores (by the example of phytoplankton),” IEEE J. Quantum Electron. 36, 163–168 (2006). [CrossRef]
  26. A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “Determination of the quantum yield of singlet–triplet conversion in complex organic compounds by the methods of laser fluorimetry,” Moscow Univ. Phys. Bull. 63, 218–220 (2008). [CrossRef]
  27. B. Valeur, “Resonance energy transfer and its applications,” in Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002), pp. 247–272.
  28. C. Caratheodory, Calculus of Variations and Partial Differential Equations of First Order (American Mathematical Society, 1999).
  29. H. Mizuno, A. Sawano, P. Eli, H. Hama, and A. Miyawaki, “Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer,” Biochem. 40, 2502–2510 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited