OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 34 — Dec. 1, 2010
  • pp: H1–H10

Compressive holography of diffuse objects

Kerkil Choi, Ryoichi Horisaki, Joonku Hahn, Sehoon Lim, Daniel L. Marks, Timothy J. Schulz, and David J. Brady  »View Author Affiliations

Applied Optics, Vol. 49, Issue 34, pp. H1-H10 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an estimation-theoretic approach to the inference of an incoherent 3D scattering density from 2D scattered speckle field measurements. The object density is derived from the covariance of the speckle field. The inference is performed by a constrained optimization technique inspired by compressive sensing theory. Experimental results demonstrate and verify the performance of our estimates.

© 2010 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: March 4, 2010
Manuscript Accepted: May 13, 2010
Published: June 23, 2010

Kerkil Choi, Ryoichi Horisaki, Joonku Hahn, Sehoon Lim, Daniel L. Marks, Timothy J. Schulz, and David J. Brady, "Compressive holography of diffuse objects," Appl. Opt. 49, H1-H10 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. T. Bates, “Astronomical speckle imaging,” Phys. Rep. 90, 203–297 (1982). [CrossRef]
  2. J. R. Fienup, R. G. Paxman, M. F. Reiley, and B. J. Thelen, “3-D imaging correlography and coherent image reconstruction,” Proc. SPIE 3815, 60–69 (1999). [CrossRef]
  3. T. Schulz, “Penalized maximum-likelihood estimation of covariance matrices with linear structure,” IEEE Trans. Signal Process. 45, 3027–3038 (1997). [CrossRef]
  4. A. D. Lanterman, “Statistical radar imaging of diffuse and specular targets using an expectation-maximization algorithm,” Proc. SPIE 4053, 20–31 (2000). [CrossRef]
  5. R. G. Dantas and E. T. Costa, “Ultrasound speckle reduction using modified gabor filters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 530–538 (2007). [CrossRef] [PubMed]
  6. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A 22, 2366–2371 (2005). [CrossRef]
  7. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049(2009). [CrossRef] [PubMed]
  8. J. W. Goodman, Speckle Phenomena in Optics (Roberts, 2006).
  9. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  10. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  11. Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009). [CrossRef] [PubMed]
  12. Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110–115 (2008). [CrossRef]
  13. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing (Prentice-Hall, 2000).
  14. J. W. Goodman, Statistical Optics (Wiley Interscience, 2000).
  15. P. Stoica and R. L. Moses, Spectral Analysis of Signals (Prentice-Hall, 2005).
  16. E. Candés, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59, 1207–1223 (2006). [CrossRef]
  17. R. G. Baraniuk, E. Candes, R. Nowak, and M. Vetterli, “Compressive sampling,” IEEE Signal Process. Mag. 25, 12–13(2008). [CrossRef]
  18. R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Trans. Inf. Theory 49, 3320–3325 (2003). [CrossRef]
  19. J. Tropp, “Just relax: convex programming methods for identifying sparse signals in noise,” IEEE Trans. Inf. Theory 52, 1030–1051 (2006). [CrossRef]
  20. T. F. Chan and J. A. Olkin, “Circulant preconditioners for toeplitz-block matrices,” Numer. Algorithms 6, 89–101 (1994). [CrossRef]
  21. B. Fischer and J. Modersitzki, “Fast inversion of matrices arising in image processing,” Numer. Algorithms 22, 1–11(1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited