OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 34 — Dec. 1, 2010
  • pp: H47–H63

Doppler encoded excitation pattern tomographic optical microscopy

Daniel Feldkhun and Kelvin H. Wagner  »View Author Affiliations


Applied Optics, Vol. 49, Issue 34, pp. H47-H63 (2010)
http://dx.doi.org/10.1364/AO.49.000H47


View Full Text Article

Enhanced HTML    Acrobat PDF (1923 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most far-field optical imaging systems rely on lenses and spatially resolved detection to probe distinct locations on the object. We describe and demonstrate a high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth of field and working distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. We also explore wide-field fluorescence imaging in scattering media by coherence gating. Finally, we present two-dimensional high-resolution tomographic image reconstructions in both scattered and fluoresced light demonstrating a thousandfold improvement in the depth of field compared to conventional lens-based microscopy.

© 2010 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.4850) Imaging systems : Optical transfer functions
(110.6960) Imaging systems : Tomography
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(180.1655) Microscopy : Coherence tomography

ToC Category:
SIGNAL RECOVERY AND COMPUTATIONAL SENSING AND IMAGING

History
Original Manuscript: May 4, 2010
Revised Manuscript: September 16, 2010
Manuscript Accepted: September 24, 2010
Published: November 17, 2010

Citation
Daniel Feldkhun and Kelvin H. Wagner, "Doppler encoded excitation pattern tomographic optical microscopy," Appl. Opt. 49, H47-H63 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-34-H47


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962). [CrossRef]
  2. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef] [PubMed]
  3. T. M. Turpin, “Image synthesis using time sequential holography,” U.S. patent 5,751,243 (12 May 1998).
  4. D. C. Munson, Jr., J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983). [CrossRef]
  5. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  6. J. R. Fienup, “Lensless coherent imaging by phase retrieval with an illumination pattern constraint,” Opt. Express 14, 498–508 (2006). [CrossRef] [PubMed]
  7. M. G. L. Gustafson, “Surpassing the lateral resolution limit by a factor of two using structured illumination,” J. Microsc. 198, 82–87 (2000). [CrossRef]
  8. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005). [CrossRef] [PubMed]
  9. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997). [CrossRef]
  10. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91(2008). [CrossRef]
  11. M.Harwit, ed., Hadamard Transform Optics (Academic, 1979).
  12. G. Indebetouw, P. Klysubun, T. Kim, and T. C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380–390 (2000). [CrossRef]
  13. N. D. Ustinov, A. V. Anufriev, A. L. Volpov, Y. A. Zimin, and A. Tolmachev, “Active aperture synthesis in observation of objects via distorting media,” Sov. J. Quantum Electron. 17, 108–110 (1987). [CrossRef]
  14. V. I. Mandrosov, Coherent Fields and Images in Remote Sensing (SPIE Press, 2003).
  15. L. Sica, “Estimator and signal-to-noise ratio for an integrative synthetic aperture imaging technique,” Appl. Opt. 30, 206–213 (1991). [CrossRef] [PubMed]
  16. R. A. Hutchin, “Microscope for producing high resolution images without precision optics,” U.S. patent 4,584,484 (22 April 1986).
  17. V. I. Mandrosov, “Panoramic microscope with interfering illuminating beams,” Proc. SPIE 3568, 167–177 (1999). [CrossRef]
  18. J. Ryu, S. S. Hong, K. P. Horn, D. F. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006). [CrossRef]
  19. J. Ryu, “Resolution improvement in optical microscopy by use of multi-beam interferometric illumination,” Ph.D. dissertation (MIT, 2003).
  20. M. S. Mermelstein, “Synthetic aperture microscopy,” Ph.D. dissertation (MIT, 1999).
  21. M. S. Mermelstein, “Multiple beam pair optical imaging,” U.S. patent 6,016,196 (18 January 2000).
  22. D. Feldkhun and K. Wagner, “Fourier analysis and synthesis tomography: a structured illumination approach to computational imaging,” in Computational Optical Sensing and Imaging (COSI) Conference (Optical Society of America, 2007).
  23. D. Feldkhun and K. Wagner, “Fourier analysis and synthesis tomography: dynamic measurement of 2D and 3D structure,” in Novel Techniques in Microscopy Conference (Optical Society of America, 2009), paper NWA3.
  24. P. Dufour, M. Piché, Y. De Konnick, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006). [CrossRef] [PubMed]
  25. S. C. Tucker, W. T. Cathey, and E. D. Dowski, “Extended depth of field and aberration control for inexpensive digital microscope systems,” Opt. Express 4, 467–474 (1999). [CrossRef] [PubMed]
  26. E. Abbe, “Beiträge zur theorie des mikroskops and der mikroskopischen wahrnehmung,” Arch. Mikrosk. Anat. EntwMech. 9, 413–418 (1873). [CrossRef]
  27. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  28. N. Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2, 121–127 (1985). [CrossRef]
  29. W. T. Cathey, Optical Image Processing and Holography(Wiley-Interscience, 1974).
  30. H.Gross, ed., Handbook of Optical Systems (Wiley-VCH, 2005), Vol.  2. [CrossRef]
  31. P. Hobbs and G. S. Kino, “Generalizing the confocal microscope via heterodyne interferometry and digital filtering,” J. Microsc. 160, 245–264 (1990). [CrossRef]
  32. A. VanderLugt, Optical Signal Processing (Wiley-Interscience, 1992).
  33. S. H. Hong, M. S. Mermelstein, and D. M. Freeman, “Reflective acousto-optic modulation with surface acoustic waves,” Appl. Opt. 43, 2920–2924 (2004). [CrossRef] [PubMed]
  34. D. M. Bloom, “Grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165–171 (1997). [CrossRef]
  35. D. W. Swift, “Image rotation devices—a comparative survey,” Opt. Laser Technol. 4, 175–188 (1972). [CrossRef]
  36. D. W. Swift, “Rotation prisms in series,” Opt. Laser Technol. 18, 213–215 (1986). [CrossRef]
  37. D. F. Fedlkhun, “Fourier domain sensing,” U.S. patent application 20090316141 (2008).
  38. A. E. T. Chiou and P. Yeh, “Scaling and rotation of optical images using a ring cavity,” Appl. Opt. 29, 1584–1586(1990). [CrossRef] [PubMed]
  39. T. Fessl, S. Ben-Yaish, F. Vacha, F. Adamec, and Z. Zalevsky, “Depth of focus extended microscope configuration for imaging of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells,” Opt. Commun. 282, 2495–2501(2009). [CrossRef]
  40. J. Sharpe, U. Ahlgren, T. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002). [CrossRef] [PubMed]
  41. H. Choi and D. C. Munson, Jr., “Direct-Fourier reconstruction in tomography and synthetic aperture radar,” Int. J. Imaging Syst. Technol. 9, 1–13 (1998). [CrossRef]
  42. M. Y. Chiu, H. B. Barret, and R. G. Simpson, “Three-dimensional reconstruction from planar projections,” J. Opt. Soc. Am. 70, 755–762 (1980). [CrossRef]
  43. S. Basu and Y. Bresler, “O(N2log2N) filtered backprojection reconstruction algorithm for tomography,” IEEE Trans. Image Process. 9, 1760–1772 (2000). [CrossRef]
  44. J. P. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley-Interscience, 1992).
  45. D. L. Hecht, “Three dimensional acoustooptics dispersion effects in acoustooptic devices for optical information processing,” in Ultrasonics Symposium (IEEE, 1983), pp. 463–466.
  46. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  47. R. B. Blahut, Theory of Remote Image Formation (Cambridge U. Press, 2004). [CrossRef]
  48. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207–R227 (2003). [CrossRef]
  49. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  50. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  51. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys. 3, 129–134 (2007). [CrossRef]
  52. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  53. V. Tuchin, Tissue Optics, 2nd ed. (SPIE, 2007). [CrossRef]
  54. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005). [CrossRef] [PubMed]
  55. P. C. Sun and E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33, 597–602 (1994). [CrossRef] [PubMed]
  56. S. M. Mermelstein, D. F. Feldkhun, and L. G. Shirley, “Video-rate surface profiling with acousto-optic accordion fringe interferometry,” Opt. Eng. 39, 106–113 (2000). [CrossRef]
  57. P. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997). [CrossRef] [PubMed]
  58. P. Hobbs, Building Electro-Optical Systems: Making It All Work (Wiley, 2000). [CrossRef]
  59. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986).
  60. M. Boin and A. Haibel, “Compensation of ring artefacts in synchrotron tomographic images,” Opt. Express 14, 12071–12075 (2006). [CrossRef] [PubMed]
  61. A. Grinvald and R. Hildesheim, “VSDI: a new era in functional imaging of cortical dynamics,” Nat. Neurosci. 5, 874–885(2004). [CrossRef]
  62. W. Hemmert, M. S. Mermelstein, and D. M. Freeman, “Nanometer resolution of three-dimensional motions using videointerference microscopy,” in Twelfth IEEE International Conference on Micro Electro Mechanical Systems, 1999. MEMS ’99 (IEEE, 1999), pp. 302–308. [CrossRef]
  63. G. E. Cragg and P. T. C. So, “Lateral resolution enhancement with standing evanescent waves,” Opt. Lett. 25, 46–48 (2000). [CrossRef]
  64. R. Heintzmann and T. M. Jovin, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599–1609 (2002). [CrossRef]
  65. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (8077 KB)     
» Media 2: AVI (4057 KB)     
» Media 3: AVI (4071 KB)     
» Media 4: AVI (3165 KB)     
» Media 5: AVI (2091 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited