OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 35 — Dec. 10, 2010
  • pp: 6675–6688

Midinfrared broadband achromatic astronomical beam combiner for nulling interferometry

Hsien-kai Hsiao, Kim A. Winick, and John D. Monnier  »View Author Affiliations


Applied Optics, Vol. 49, Issue 35, pp. 6675-6688 (2010)
http://dx.doi.org/10.1364/AO.49.006675


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integrated optic beam combiners offer many advantages over conventional bulk optic implementations for astronomical imaging. To our knowledge, integrated optic beam combiners have only been demonstrated at operating wavelengths below 4 μm . Operation in the midinfrared wavelength region, however, is highly desirable. In this paper, a theoretical design technique based on three coupled waveguides is developed to achieve fully achromatic, broadband, polarization-insensitive, lossless beam combining. This design may make it possible to achieve the very deep broadband nulls needed for exoplanet searching.

© 2010 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(350.1260) Other areas of optics : Astronomical optics
(110.3175) Imaging systems : Interferometric imaging
(120.6168) Instrumentation, measurement, and metrology : Speckle interferometry, stellar

ToC Category:
Imaging Systems

History
Original Manuscript: August 16, 2010
Manuscript Accepted: September 25, 2010
Published: December 1, 2010

Citation
Hsien-kai Hsiao, Kim A. Winick, and John D. Monnier, "Midinfrared broadband achromatic astronomical beam combiner for nulling interferometry," Appl. Opt. 49, 6675-6688 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-35-6675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Labeyrie, S. G. Lipson, and P. Nisenson, An Introduction to Optical Stellar Interferometry (Cambridge U. Press, 2006). [CrossRef]
  2. P. Kern, F. Malbet, I. Schanen-Duport, and P. Benech, “Integrated optics single-mode interferometric beam combiner for near infrared astronomy,” in Integrated Optics for Astronomical Interferometry (Bastianelli-Guirimand, 1996), pp. 195–204.
  3. J. P. Berger, K. Rousselet-Perraut, P. Kern, F. Malbet, I. Schanen-Duport, F. Reynaud, P. Haguenauer, and P. Benech, “Integrated optics for astronomical interferometry. II. First laboratory white-light interferograms,” Astron. Astrophys. Suppl. Ser. 139, 173–177 (1999). [CrossRef]
  4. P. Haguenauer, J. P. Berger, K. Rousselet-Perraut, P. Kern, F. Malbet, I. Schanen-Duport, and P. Benech, “Integrated optics for astronomical interferometry. III. Optical validation of a planar optics two-telescope beam combiner,” Appl. Opt. 39, 2130–2139 (2000). [CrossRef]
  5. J. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, I. Schanen, M. Severi, R. Millan-Gabet, and W. Traub, “Integrated optics for astronomical interferometry. IV. First measurements of stars,” Astron. Astrophys. 376, L31–L34(2001). [CrossRef]
  6. E. Laurent, K. Rousselet-Perraut, P. Benech, J. P. Berger, S. Gluck, P. Haguenauer, P. Kern, F. Malbet, and I. Schanen-Duport, “Integrated optics for astronomical interferometry. V. Extension to the K band,” Astron. Astrophys. 390, 1171–1176 (2002). [CrossRef]
  7. J. B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J. P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450, 1259–1264 (2006). [CrossRef]
  8. B. Mennesson, J. M. Mariotti, V. C. d. Foresto, G. Perrin, S. Ridgway, W. A. Traub, N. P. Carleton, M. G. Lacasse, and G. Mazé, “Thermal infrared stellar interferometry using single-mode guided optics: first results with the TISIS experiment on IOTA,” Astron. Astrophys. 346, 181–189 (1999).
  9. H.-K. Hsiao, K. A. Winick, J. D. Monnier, and J.-P. Berger, “An infrared integrated optic astronomical beam combiner for stellar interferometry at 3–4μm,” Opt. Express 17, 18489–18500 (2009). [CrossRef]
  10. H.-K. Hsiao, K. A. Winick, and J. D. Monnier, “A mid-infrared integrated optic astronomical beam combiner for stellar interferometry,” in OSA Frontiers in Optics (FiO) (OSA, 2009), paper FMJ1.
  11. H.-K. Hsiao, K. A. Winick, J. D. Monnier, and J.-P. Berger, “Integrated optic beam combiners for stellar interferometry and nulling at near- and mid-infrared wavelengths,” Proc. SPIE 7734, 77342T (2010). [CrossRef]
  12. A. Takagi, K. Jinguji, and M. Kawachi, “Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure,” J. Quantum Electron. 28, 848–854 (1992). [CrossRef]
  13. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26, 1326–1327 (1990). [CrossRef]
  14. A. F. Milton and W. K. Burns, “Tapered velocity couplers for integrated optics: design,” Appl. Opt. 14, 1207–1212 (1975). [CrossRef] [PubMed]
  15. V. M. Schneider and H. T. Hattori, “High-tolerance power splitting in symmetric triple-mode evolution couplers,” IEEE J. Quantum Electron. 36, 923–930 (2000). [CrossRef]
  16. H. Ishikawa, “Fully adiabatic design of waveguide branches,” J. Lightwave Technol. 25, 1832–1840 (2007). [CrossRef]
  17. T. Tamir, Guided-Wave Optoelectronics, 2nd ed. (Springer-Verlag, 1990), Chap. 3. [CrossRef]
  18. H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5, 16–23 (1987). [CrossRef]
  19. N. Ho, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Meyers, and N. C. Anheier, Jr., “Single-mode low-loss chalcogenide glass waveguides for mid-infrared,” Opt. Lett. 31, 1860–1862 (2006). [CrossRef] [PubMed]
  20. J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007). [CrossRef] [PubMed]
  21. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguide components for the long-wave infrared region,” J. Opt. A Pure Appl. Opt. 8, 840–848 (2006). [CrossRef]
  22. R. A. Soref, “The past, present, and future of silicon photonics,” J. Sel. Top. Quantum Electron. 12, 1678–1687(2006). [CrossRef]
  23. A. Nayfeh, “Heteroepitaxial growth of relaxed germanium on silicon,” Ph.D. thesis (Stanford University, 2006).
  24. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980). [CrossRef]
  25. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” J. Quantum Electron. 23, 123–129 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited