OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 35 — Dec. 10, 2010
  • pp: 6710–6717

Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference

Kandammathe Valiyaveedu Sreekanth, Jeun Kee Chua, and Vadakke Matham Murukeshan  »View Author Affiliations


Applied Optics, Vol. 49, Issue 35, pp. 6710-6717 (2010)
http://dx.doi.org/10.1364/AO.49.006710


View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we experimentally demonstrate and compare single-exposure multiple-beam interference lithography based on conventional laser interference, evanescent wave interference, and surface plasmon interference. The proposed two-beam and four-beam interference approaches are carried out theoretically and verified experimentally, employing the proposed configurations so as to realize the patterning of one- and two-dimensional periodic features on photoresists. A custom-fabricated grating is employed in the configuration in order to achieve two- and four-beam interference.

© 2010 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 29, 2010
Revised Manuscript: October 26, 2010
Manuscript Accepted: October 27, 2010
Published: December 1, 2010

Citation
Kandammathe Valiyaveedu Sreekanth, Jeun Kee Chua, and Vadakke Matham Murukeshan, "Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference," Appl. Opt. 49, 6710-6717 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-35-6710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. B. Divliansky, A. Shishido, I. C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001). [CrossRef]
  2. H. Li, C. Du, X. Chen, and Y. Fu, “Ag dots array fabricated using laser interference technique for biosensing,” Sens. Actuators B 134, 940–944 (2008). [CrossRef]
  3. M. Farhoud, J. Ferrera, A. J. Lochtenburg, T. E. Murphy, M. L. Scahattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999). [CrossRef]
  4. J. P. Spallas, A. M. Harwryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995). [CrossRef]
  5. N. Feth, C. Enkrich, M. Wegener, S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15, 501–507 (2007). [CrossRef] [PubMed]
  6. R. Ji, W. Lee, R. Scholz, U. Gosele, and K. Nielsch, “Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition,” Adv. Mater. 18, 2593–2596 (2006). [CrossRef]
  7. Q. Wie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, “Fabrication of nanostructures with laser interference lithography,” J. Alloys Compd. 449, 261–264(2008). [CrossRef]
  8. N. Kramer, M. Niesten, and C. Schonenberger, “Resistless high resolution optical lithography on silicon,” Appl. Phys. Lett. 67, 2989–2991 (1995). [CrossRef]
  9. A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mucklich, “One-step production of organized surface architectures on polymeric materials by direct laser interference patterning,” Adv. Eng. Mater. 9, 99–103 (2007). [CrossRef]
  10. W. Lee, R. Ji, C. Ross, U. Gosele, and K. Nielsch, “Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography,” Small 2, 978–982 (2006). [CrossRef] [PubMed]
  11. J. de Boor, N. Geyer, U. Gosele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett. 34, 1783–1785 (2009). [CrossRef] [PubMed]
  12. C. Lu, X. K. Hu, S. S. Dimov, and R. H. Lipson, “Controlling large-scale film morphology by phase manipulation in interference lithography,” Appl. Opt. 46, 7202–7206 (2007). [CrossRef] [PubMed]
  13. J. K. Chua and V. M. Murukeshan, “Patterning of two-dimensional nanoscale features using grating-based multiple beams interference lithography,” Phys. Scr. 80, 015401 (2009). [CrossRef]
  14. S. Sainov, E. Anne, E. Carole, and D. J. Lougnot, “High spatial frequency evanescent wave holographic recording in photopolymers,” J. Opt. A: Pure Appl. Opt. 5, 142–146 (2003). [CrossRef]
  15. P. S. Ramanujam, “Evanescent polarization holographic recording of sub-200nm gratings in an azobenzene polyester,” Opt. Lett. 28, 2375–2377 (2003). [CrossRef] [PubMed]
  16. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999). [CrossRef]
  17. R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt. 40, 1692–1698 (2001). [CrossRef]
  18. J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A: Pure Appl. Opt. 8, S213–S218(2006). [CrossRef]
  19. J. K. Chua and V. M. Murukeshan, “UV laser-assisted multiple evanescent waves lithography for near-field nanopatterning,” Micro Nano Lett. 4, 210–214 (2009). [CrossRef]
  20. K. V. Sreekanth and V. M. Murukeshan, “Large-area maskless surface plasmon interference for one-and two-dimensional periodic nanoscale feature patterning,” J. Opt. Soc. Am. A 27, 95–99 (2010). [CrossRef]
  21. K. V. Sreekanth and V. M. Murukeshan, “Four beams surface plasmon interference nanoscale lithography for patterning of two-dimensional periodic features,” J. Vac. Sci. Technol. B 28, 128–130 (2010). [CrossRef]
  22. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004). [CrossRef]
  23. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004). [CrossRef]
  24. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005). [CrossRef] [PubMed]
  25. K. V. Sreekanth, V. M. Murukeshan, and J. K. Chua, “A planar layer configuration for surface plasmon interference nanoscale lithography,” Appl. Phys. Lett. 93, 093103 (2008). [CrossRef]
  26. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005). [CrossRef]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  28. A. Passian, A. Wig, L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area SP interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy 100, 429–436 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited