OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 35 — Dec. 10, 2010
  • pp: 6718–6725

Electronically controlled agile lens-based broadband variable photonic delay line for photonic and radio frequency signal processing

Nabeel A. Riza, Syed Azer Reza, and Philip J. Marraccini  »View Author Affiliations


Applied Optics, Vol. 49, Issue 35, pp. 6718-6725 (2010)
http://dx.doi.org/10.1364/AO.49.006718


View Full Text Article

Enhanced HTML    Acrobat PDF (907 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To the best of our knowledge, proposed for the first time is the design of an optically broadband variable photonic delay line (VPDL) using an electronically controlled variable focus lens (ECVFL), mirror motion, and beam-conditioned free-space laser beam propagation. This loss-minimized fiber-coupled VPDL design using micro-optic components has the ability to simultaneously provide optical attenuation controls and analog-mode high-resolution (subpicoseconds) continuous delays over a moderate (e.g., < 5 ns ) range of time delays. An example VPDL design using a liquid-based ECVFL demonstrates up to a 1 ns time-delay range with > 10 dB optical attenuation controls. The proposed VPDL is deployed to demonstrate a two-tap RF notch filter with tuned notches at 854.04 and 855.19 MHz with 22.6 dB notch depth control via VPDL attenuation control operations. The proposed VPDL is useful in signal conditioning applications requiring fiber-coupled broadband light time delay and attenuation controls.

© 2010 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.0230) Optical devices : Optical devices
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 12, 2010
Revised Manuscript: October 20, 2010
Manuscript Accepted: October 22, 2010
Published: December 2, 2010

Citation
Nabeel A. Riza, Syed Azer Reza, and Philip J. Marraccini, "Electronically controlled agile lens-based broadband variable photonic delay line for photonic and radio frequency signal processing," Appl. Opt. 49, 6718-6725 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-35-6718


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N.A.Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE, 1997).
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theory Tech. 54, 832–846(2006). [CrossRef]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006). [CrossRef]
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1, 319–330 (2007). [CrossRef]
  5. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]
  6. N. Madamopoulos and N. A. Riza, “Demonstration of an all-digital 7bit 33-channel photonic delay line for phased-array radars,” Appl. Opt. 39, 4168–4181 (2000). [CrossRef]
  7. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, and P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996). [CrossRef] [PubMed]
  8. X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time delay device for millimeter wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465(1994). [CrossRef]
  9. A. P. Goutzoulis, D. K. Davies, and J. M. Zomp, “Prototype binary fiber optic delay line,” Opt. Eng. 28, 1193–1202(1989).
  10. R. A. Soref, “Fiber grating prism for true time delay beam steering,” Fiber Integr. Opt. 15, 325–333 (1996). [CrossRef]
  11. R. D. Esman, Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, and D. G. Cooper, “Fiber-optic prism true time delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993). [CrossRef]
  12. R. A. Minasian, “Photonic signal processing of high-speed signals using fiber gratings,” Opt. Fiber Technol. 6, 91–108(2000). [CrossRef]
  13. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microwave Theor. Tech. 47, 1321–1326 (1999). [CrossRef]
  14. V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N×N AWG-based delay lines,” IEEE Photon. Technol. Lett. 15, 584–586 (2003). [CrossRef]
  15. N. A. Riza, M. A. Arain, and S. A. Khan, “Hybrid analog-digital variable fiber-optic delay line,” J. Lightwave Technol. 22, 619–624 (2004). [CrossRef]
  16. N. A. Riza, “Switchless hybrid analog-digital variable optical delay line for radio frequency signal processing,” Opt. Eng. 48, 035005 (2009). [CrossRef]
  17. P. Q. Thai, A. Alphones, and D. R. Lim, “Limitations by group delay ripple on optical beam-forming with chirped fiber grating,” J. Lightwave Technol. 27, 5619–5625 (2009). [CrossRef]
  18. B. M. Jung and J. P. Yao, “A two-dimensional optical true time-delay beamformer consisting of a fiber Bragg grating prism and switch-based fiber-optic delay lines,” IEEE Photon. Technol. Lett. 21, 627–629 (2009). [CrossRef]
  19. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]
  20. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis,” J. Lightwave Technol. 28, 3–18 (2010). [CrossRef]
  21. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997). [CrossRef]
  22. “OZ optics,” Canada ODL-100, ODL-200 Datasheets (2010).
  23. S. Yuan and N. A. Riza, “General formula for coupling loss characterization of single mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999). [CrossRef]
  24. S. Yuan and N. A. Riza, “General formula for coupling loss characterization of single mode fiber collimators by use of gradient-index rod lenses: errata,” Appl. Opt. 38, 6292 (1999). [CrossRef]
  25. M. van Buren and N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003). [CrossRef] [PubMed]
  26. N. A. Riza and M. C. DeJule, “Three terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994). [CrossRef] [PubMed]
  27. N. A. Riza and M. C. DeJule, “A novel programmable liquid crystal lens device for adaptive optical interconnect and beamforming applications,” presented at the International Conference on Optical Computing, Edinburgh, Scotland, 22–25 August 1994.
  28. N. A. Riza and S. Yuan, “Demonstration of a liquid crystal adaptive alignment tweeker for high speed infrared band fiber-fed freespace systems,” Opt. Eng. 37, 1876–1880 (1998). [CrossRef]
  29. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282, 1298–1303(2009). [CrossRef]
  30. S. A. Reza and N. A. Riza, “High dynamic range variable fiber optical attenuator using digital micromirrors and opto-fluidics,” IEEE Photon. Technol. Lett. 21, 845–847 (2009). [CrossRef]
  31. N. A. Riza and P. J. Marraccini, “Broadband 2×2 free-space optical switch using electrically controlled liquid lenses,” Opt. Commun. 283, 1711–1714 (2010). [CrossRef]
  32. N. A. Riza and S. A. Reza, “Non-contact distance sensor using spatial signal processing,” Opt. Lett. 34, 434–436 (2009). [CrossRef] [PubMed]
  33. M. Sheikh and N. A. Riza, “Motion-free hybrid design laser beam propagation analyzer using a digital micro-mirror device and a variable focus liquid lens,” Appl. Opt. 49, D6–D11 (2010). [CrossRef] [PubMed]
  34. N. A. Riza and S. A. Reza, “Smart agile lens remote optical sensor for three-dimensional object shape measurements,” Appl. Opt. 49, 1139–1150 (2010). [CrossRef] [PubMed]
  35. S. A. Reza and N. A. Riza, “Agile lensing-based non-contact liquid level optical sensor for extreme environments,” Opt. Commun. 283, 3391–3397 (2010). [CrossRef]
  36. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  37. Piezo actuators, PI Catalog, 2010 (www.pi-usa.us).
  38. T.-R.Hsu, ed., MEMS Packaging (INSPEC, IEE, 2004). [CrossRef]
  39. N. A. Riza and F. N. Ghauri, “High resolution tunable microwave filter using hybrid analog-digital controls via an acousto-optic tunable filter and digital micromirror device,” J. Lightwave Technol. 26, 3056–3061 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited