OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 35 — Dec. 10, 2010
  • pp: 6726–6736

Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy

Vincent Revéret, Louis Rodriguez, and Patrick Agnèse  »View Author Affiliations

Applied Optics, Vol. 49, Issue 35, pp. 6726-6736 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.

© 2010 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(350.1270) Other areas of optics : Astronomy and astrophysics
(040.2235) Detectors : Far infrared or terahertz

ToC Category:

Original Manuscript: September 7, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: October 22, 2010
Published: December 3, 2010

Vincent Revéret, Louis Rodriguez, and Patrick Agnèse, "Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy," Appl. Opt. 49, 6726-6736 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel Space Observatory: an ESA facility for far-infrared and submillimetre astronomy,” Astron. Astrophys. 518, L1–L7 (2010). [CrossRef]
  2. T. Nakagawa and H. Murakami, “Mid- and far-infrared astronomy mission SPICA,” Adv. Space Res. 40, 679–683 (2007). [CrossRef]
  3. R. Güsten, L. Å. Nyman, P. Schilke, K. Menten, C. Cesarsky, and R. Booth, “The Atacama Pathfinder EXperiment (APEX)—a new submillimeter facility for southern skies,” Astron. Astrophys. 454, L13–L16 (2006). [CrossRef]
  4. T. Sebring, “The Cornell Caltech Atacama Telescope: progress and plans 2010,” Proc. SPIE 7733, 77331X (2010). [CrossRef]
  5. A. Poglitsch, C. Waelkens, N. Geis, H. Feuchtgruber, B. Vandenbussche, L. Rodriguez, O. Krause, and E. Renotte, “The Photodetector Array camera and Spectrometer (PACS) on the Herschel Space Observatory,” Astron. Astrophys. 518, L2–L13 (2010). [CrossRef]
  6. N. Billot, P. Agnèse, J.-L. Auguéres, A. Béguin, A. Bouére, O. Boulade, C. Cara, C. Cloué, E. Doumayrou, L. Duband, B. Horeau, I. le Mer, J. Lepennec, J. Martignac, K. Okumura, V. Revéret, M. Sauvage, F. Simoens, and L. Vigroux, “The Herschel/PACS 2560 bolometers imaging camera,” Proc. SPIE 6265, 62650D (2006). [CrossRef]
  7. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994). [CrossRef]
  8. M. J. Griffin, J. J. Bock, and W. K. Gear, “Relative performance of filled and feedhorn-coupled focal-plane architectures,” Appl. Opt. 41, 6543–6554 (2002). [CrossRef] [PubMed]
  9. P. Agnèse, C. Buzzi, P. Rey, L. Rodriguez, and J.-L. Tissot, “New technological development for far-infrared bolometer arrays,” Proc. SPIE 3698, 284–290 (1999). [CrossRef]
  10. L. N. Hadley and D. M. Dennison, “Reflection and transmission interference filters,” J. Opt. Soc. Am. 37, 451–465 (1947). [CrossRef] [PubMed]
  11. W. W. Salisbury, “Absorbent body for electromagnetic waves,” U.S. patent 2,599,944 (10 June 1952).
  12. R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Antennas Propag. Mag. 36, 1443–1454 (1988). [CrossRef]
  13. J. Zhang, W. Cui, M. Juda, D. McCammon, R. L. Kelley, S. H. Moseley, C. K. Stahle, and A. E. Szymkowiak, “Hopping conduction in partially compensated doped silicon,” Phys. Rev. B 48, 2312–2319 (1993). [CrossRef]
  14. J. J. Bock, D. Chen, P. D. Mauskopf, and A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995). [CrossRef]
  15. M. Mirotznik, W. A. Beck, D. Prather, R. Vollmerhausen, and R. Driggers, “Optical absorption modeling of thermal infrared detectors by use of the finite-difference time-domain method,” Opt. Lett. 26, 280–282 (2001). [CrossRef]
  16. F. Abelès, “La théorie générale des couches minces,” J. Phys. Radium 11, 307–310 (1950). [CrossRef]
  17. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Hilger,1986). [CrossRef]
  18. R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data 8, 1147–1298(1979). [CrossRef]
  19. R. J. Langley and E. A. Parker, “Equivalent circuit model for arrays of square loops,” Electron. Lett. 18, 294–296(1982). [CrossRef]
  20. B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Antennas Propag. Mag. 53, 745–752 (2005). [CrossRef]
  21. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957). [CrossRef]
  22. D. C. Mattis and J. Bardeen, “Theory of the anomalous skin effect in normal and superconducting metals,” Phys. Rev. 111, 412–417 (1958). [CrossRef]
  23. R. L. Kautz, “Picosecond pulses on superconducting striplines,” J. Appl. Phys. 49, 308–314 (1978). [CrossRef]
  24. C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Am. 44, 188–191 (1954). [CrossRef]
  25. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992). [CrossRef] [PubMed]
  26. M. Talvard, Ph. André, L. Rodriguez, J. Le Pennec, C. De Breuck, V. Revéret, P. Agnèse, O. Boulade, E. Doumayrou, D. Dubreuil, E. Ercolani, P. Gallais, B. Horeau, P.-O. Lagage, B. Leriche, M. Lortholary, J. Martignac, V. Minier, E. Pantin, D. Rabanus, J. Relland, and G. Willmann, “Recent results obtained on the APEX 12 m antenna with the ArTeMiS prototype camera,” Proc. SPIE 7020, 702009 (2008). [CrossRef]
  27. Ph. André, V. Minier, P. Gallais, V. Revéret, J. Le Pennec, L. Rodriguez, O. Boulade, E. Doumayrou, D. Dubreuil, M. Lortholary, J. Martignac, M. Talvard, C. De Breuck, G. Hamon, N. Schneider, S. Bontemps, P.-O. Lagage, E. Pantin, H. Roussel, M. Miller, C. R. Purcell, T. Hill, and J. Stutzki, “First 450 μm dust continuum mapping of the massive star-forming region NGC 3576 with the P-ArTéMiS bolometer camera,” Astron. Astrophys. 490, L27–L30 (2008). [CrossRef]
  28. V. Minier, Ph. André, P. Bergman, F. Motte, F. Wyrowski, J. Le Pennec, L. Rodriguez, O. Boulade, E. Doumayrou, D. Dubreuil, P. Gallais, G. Hamon, P.-O. Lagage, M. Lortholary, J. Martignac, V. Revéret, H. Roussel, M. Talvard, G. Willmann, and H. Olofsson, “Evidence of triggered star formation in G327.3-0.6: dust-continuum mapping of an infrared dark cloud with P-ArTéMiS,” Astron. Astrophys. 501, L1–L4 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited