OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 35 — Dec. 10, 2010
  • pp: 6737–6748

Statistical model for fading return signals in coherent lidars

Aniceto Belmonte  »View Author Affiliations

Applied Optics, Vol. 49, Issue 35, pp. 6737-6748 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A statistical model for the return signal in a coherent lidar is derived from the fundamental principles of atmospheric scattering and turbulent propagation. The model results in a three-parameter probability distribution for the coherent signal-to-noise ratio in the presence of atmospheric turbulence and affected by target speckle. We consider the effects of amplitude and phase fluctuations, in addition to local oscillator shot noise, for both passive receivers and those employing active modal compensation of wavefront phase distortion. We obtain exact expressions for statistical moments for lidar fading and evaluate the impact of various parameters, including the ratio of receiver aperture diameter to the wavefront coherence diameter, the speckle effective area, and the number of modes compensated.

© 2010 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3640) Atmospheric and oceanic optics : Lidar

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 21, 2010
Manuscript Accepted: October 24, 2010
Published: December 6, 2010

Aniceto Belmonte, "Statistical model for fading return signals in coherent lidars," Appl. Opt. 49, 6737-6748 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Totems, V. Jolivet, J.-P. Ovarlez, and N. Martin, “Advanced signal processing methods for pulsed laser vibrometry,” Appl. Opt. 49, 3967–3979 (2010). [CrossRef] [PubMed]
  2. D. Jameson, M. Dierking, and B. Duncan, “Effects of spatial modes on ladar vibration signature estimation,” Appl. Opt. 46, 7365–7373 (2007). [CrossRef] [PubMed]
  3. M. J. Kavaya, “Laser and lidar technology development for highly accurate vertical profiles of vector wind velocity from earth orbit,” in Coherent Optical Technologies and Applications (Optical Society of America, 2008), paper CTuA3.
  4. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent Doppler lidar system for wind sensing,” Appl. Opt. 46, 1953–1962 (2007). [CrossRef] [PubMed]
  5. A. Dinovitser, M. W. Hamilton, and R. A. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010). [CrossRef] [PubMed]
  6. L. Joly, F. Marnas, F. Gibert, D. Bruneau, B. Grouiez, P. H. Flamant, G. Durry, N. Dumelie, B. Parvitte, and V. Zéninari, “Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm: consequences for space-based DIAL measurements and potential biases,” Appl. Opt. 48, 5475–5483(2009). [CrossRef] [PubMed]
  7. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004). [CrossRef] [PubMed]
  8. S. Lundqvist, C.-O. Fält, U. Persson, B. Marthinsson, and S. T. Eng, “Air pollution monitoring with a Q-switched CO2-laser lidar using heterodyne detection,” Appl. Opt. 20, 2534–2538(1981). [CrossRef] [PubMed]
  9. Y. Zhao, W. A. Brewer, W. L. Eberhard, and R. J. Alvarez, “Lidar measurement of ammonia concentrations and fluxes in a plume from a point source,” J. Atmos. Ocean. Technol. 19, 1928–1938 (2002). [CrossRef]
  10. A. Pal, C. D. Clark, M. Sigman, and D. K. Killinger, “Differential absorption lidar CO2 laser system for remote sensing of TATP related gases,” Appl. Opt. 48, B145–B150 (2009). [CrossRef] [PubMed]
  11. See papers on Advanced Component Technologies presented at the Fifteenth Biennial Coherent Laser Radar Technology and Applications Conference (Universities Space Research Association, 2009).
  12. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–67(1967). [CrossRef]
  13. H. T. Yura, “Signal-to-noise ratio of heterodyne lidar systems in the presence of atmospheric turbulence,” Opt. Acta 26, 627–644 (1979). [CrossRef]
  14. J. H. Shapiro, B. A. Capron, and R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292–3312 (1981). [CrossRef] [PubMed]
  15. S. F. Clifford and S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (1981). [CrossRef] [PubMed]
  16. S. F. Clifford and S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere; correction,” Appl. Opt. 20, 1502 (1981). [CrossRef]
  17. B. J. Rye, “Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981). [CrossRef]
  18. R. G. Frehlich and M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  19. J. L. Codona, D. B. Creamer, S. M. Flatté, R. G. Frehlich, and F. S. Henyey, “Solution for the fourth moment of waves propagating in random media,” Radio Sci. 21, 929–948(1986). [CrossRef]
  20. A. Belmonte and B. J. Rye, “Heterodyne lidar returns in turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000). [CrossRef]
  21. A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16, 6756–6767 (2008). [CrossRef] [PubMed]
  22. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979). [CrossRef] [PubMed]
  23. M. Nakagami, “The m-distribution. A general formula of intensity distribution of rapid fading,” in Statistical Methods in Radio Wave Propagation, W.C.Hoffman, ed. (Pergamon, 1960).
  24. A. Belmonte and J. M. Kahn, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express 16, 14151–14162 (2008). [CrossRef] [PubMed]
  25. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  26. J. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10, 59–70 (1975). [CrossRef]
  27. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications ( Roberts & Company, 2007).
  28. R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an inhomogeneous medium,” Appl. Opt. 10, 1652–1658 (1971). [CrossRef] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  30. G. Dai, “Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen—Loève functions,” J. Opt. Soc. Am. A 12, 2182–2193 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited