OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6824–6833

Multiframe image estimation for coded aperture snapshot spectral imagers

David Kittle, Kerkil Choi, Ashwin Wagadarikar, and David J. Brady  »View Author Affiliations


Applied Optics, Vol. 49, Issue 36, pp. 6824-6833 (2010)
http://dx.doi.org/10.1364/AO.49.006824


View Full Text Article

Enhanced HTML    Acrobat PDF (1434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A coded aperture snapshot spectral imager (CASSI) estimates the three-dimensional spatiospectral data cube from a snapshot two-dimensional coded projection, assuming that the scene is spatially and spectrally sparse. For less spectrally sparse scenes, we show that the use of multiple nondegenerate snapshots can make data cube recovery less ill-posed, yielding improved spatial and spectral reconstruction fidelity. Additionally, data acquisition can be easily scaled to meet the time/resolution requirements of the scene with little modification or extension of the original CASSI hardware. A multiframe reconstruction of a 640 × 480 × 53 voxel datacube with 450 650 nm white-light illumination of a scene reveals substantial improvement in the reconstruction fidelity, with limited increase in acquisition and reconstruction time.

© 2010 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(110.4155) Imaging systems : Multiframe image processing
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

History
Original Manuscript: August 3, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: October 30, 2010
Published: December 13, 2010

Citation
David Kittle, Kerkil Choi, Ashwin Wagadarikar, and David J. Brady, "Multiframe image estimation for coded aperture snapshot spectral imagers," Appl. Opt. 49, 6824-6833 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-36-6824


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Brady, Optical Imaging and Spectroscopy (Wiley-Interscience, 2008), pp. 387–390.
  2. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potulri, and M. E. Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,” Appl. Opt. 45, 2965–2974 (2006). [CrossRef] [PubMed]
  3. S. T. McCain, M. E. Gehm, Y. Wang, N. P. Pitsianis, and D. J. Brady, “Coded aperture Raman spectrosopy for quantitative measurements of ethanol in a tissue phantom,” Appl. Spectrosc. 60, 663–671 (2006). [CrossRef] [PubMed]
  4. M. E. Gehm, M. S. Kim, C. Fernandez, and D. J. Brady, “High-throughput, multiplexed pushbroom hyperspectral microscopy,” Opt. Express 16, 11032–11043 (2008). [CrossRef] [PubMed]
  5. A. Wagadarikar, R. J., R. Willett, and D. J. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008). [CrossRef] [PubMed]
  6. C. F. Cull, K. Choi, D. J. Brady, and T. Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager,” Appl. Opt. 49, B59–B70 (2010). [CrossRef] [PubMed]
  7. B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80, 986–993(2001). [CrossRef] [PubMed]
  8. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9, 444–453 (2001). [CrossRef] [PubMed]
  9. M. H. W. Johnson, D. W. W. Fink, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036 (2007). [CrossRef] [PubMed]
  10. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010). [CrossRef] [PubMed]
  11. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010). [CrossRef] [PubMed]
  12. E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians (European Mathematical Society, 2006), pp. 1433–1452.
  13. P. Ye, H. Arguello, and G. Arce, “Spectral aperture code design for multi-shot compressive spectral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper DWA6.
  14. H. Arguello and G. R. Arce, “Code aperture design for band selectivity in spectral imaging using cassi system,” in Proceedings of the European Signal Processing Conference (EUSIPCO) (European Association for Signal Processing, 2010).
  15. M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007). [CrossRef]
  16. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image estimation for coded aperture snapshot spectral imagers,” Proc. SPIE 7076, 707602 (2008). [CrossRef]
  17. X. Sun and N. P. Pitsianis, “Solving non-negative linear inverse problems with the NeAREst method,” Proc. SPIE 7074, 707402 (2008). [CrossRef]
  18. S. Wright, R. Nowak, and M. Figueiredo, “Sparse reconstruction by separable approximation,” IEEE Trans. Signal Process. 57, 2479–2493 (2009). [CrossRef]
  19. J. Bioucas-Dias and M. Figueiredo, “A new twist: two-step iterative shrinkage/thresholding for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007). [CrossRef] [PubMed]
  20. P. A. Mitchell, “Hyperspectral digital imagery collection experiment (HYDICE),” Proc. SPIE 2587, 70–95 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited