OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6872–6877

Near-field optical properties of silver nanocylinders arranged in a Pascal triangle

G. V. Pavan Kumar  »View Author Affiliations


Applied Optics, Vol. 49, Issue 36, pp. 6872-6877 (2010)
http://dx.doi.org/10.1364/AO.49.006872


View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Pascal triangle is a geometric representation of binomial coefficients in triangular form. We utilize this formalism to deterministically arrange silver nanocylinders of different sizes (30, 60, and 90 nm ) on a triangle and numerically study their near-field optical properties. We show that near-field intensities at specific points on this triangle depend on the wavelength and angle of incidence. From the wavelength-dependent studies at various junctions of nanocylinders, we obtain maximum near-field intensity at 350 and 380 nm . By varying the angle of incidence of the TM-polarized plane wave, we find systematic variation in the near-field intensity at different junctions of the geometry. Our study will lead to insights in designing controllable electromagnetic hot spots for chip-based plasmonic devices.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 14, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 10, 2010
Published: December 14, 2010

Citation
G. V. Pavan Kumar, "Near-field optical properties of silver nanocylinders arranged in a Pascal triangle," Appl. Opt. 49, 6872-6877 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-36-6872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).
  3. N. J. Halas, “Connecting the dots: reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. USA 106, 3643–3644(2009). [CrossRef] [PubMed]
  4. R. P. Van Duyne, “Molecular plasmonics,” Science 306, 985–986 (2004). [CrossRef] [PubMed]
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–62 (2007). [CrossRef] [PubMed]
  6. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008). [CrossRef]
  7. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007). [CrossRef]
  8. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003). [CrossRef]
  9. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010). [CrossRef] [PubMed]
  10. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002). [CrossRef]
  11. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007). [CrossRef]
  12. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  13. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599–5611 (2001). [CrossRef]
  14. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  15. Y.-F. Chau, Y.-J. Lin, and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Opt. Express 18, 3510–3518 (2010). [CrossRef] [PubMed]
  16. C. Girard and R. Quidant, “Near-field optical transmittance of metal particle chain waveguides,” Opt. Express 12, 6141–6146(2004). [CrossRef] [PubMed]
  17. M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248, 543–549 (2005). [CrossRef]
  18. Y.-F. Chau, H.-H. Yeh, C.-C. Liao, H.-F. Ho, C.-Y. Liu, and D. P. Tsai, “Controlling surface plasmon of several pair arrays of silver-shell nanocylinders,” Appl. Opt. 49, 1163–1169 (2010). [CrossRef] [PubMed]
  19. Y.-F. Chau, H.-H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557–5561 (2008). [CrossRef] [PubMed]
  20. Y.-F. Chau, H.-H. Yeh, C.-Y. Liu, and D. P. Tsai, “The optical properties in a chain waveguide of an array of silver nanoshell with dielectric holes,” Opt. Commun. 283, 3189–3193 (2010). [CrossRef]
  21. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12, 3422–3427 (2004). [CrossRef] [PubMed]
  22. B. Auguie and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34, 401–403 (2009). [CrossRef] [PubMed]
  23. M.-J. Sung, Y.-F. Ma, Y.-F. Chau, and D.-W. Huang, “Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders,” Appl. Opt. 49, 920–926(2010). [CrossRef] [PubMed]
  24. N. A. Mirin, T. A. Ali, P. Nordlander, and N. J. Halas, “Perforated semishells: far-field directional control and optical frequency magnetic response,” ACS Nano 4, 2701–2712 (2010). [CrossRef] [PubMed]
  25. J. P. Camden, J. A. Dieringer, J. Zhao, and R. P. Van Duyne, “Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing,” Acc. Chem. Res. 41, 1653–1661(2008). [CrossRef] [PubMed]
  26. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 267–297 (2007). [CrossRef]
  27. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef] [PubMed]
  28. S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. USA 107, 12086–12090 (2010). [CrossRef] [PubMed]
  29. S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express 16, 12511–12522 (2008). [CrossRef] [PubMed]
  30. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009). [CrossRef] [PubMed]
  31. L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A: Pure Appl. Opt. 10, 064013 (2008). [CrossRef]
  32. D.Zwillinger, ed., CRC Standard Mathematical Tables and Formulae, 31st ed. (CRC, 2003).
  33. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A 27, 2261–2271. [CrossRef]
  34. V. Giannini and J. A. Sanchez-Gil, “Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form,” J. Opt. Soc. Am. A 24, 2822–2830 (2007). [CrossRef]
  35. V. Giannini and J. A. Sanchez-Gil, “Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas,” Opt. Lett. 33, 899–901 (2008). [CrossRef] [PubMed]
  36. J. W. Liaw, “New surface integral equations for the light scattering of multi-metallic nanoscatterers,” Eng. Anal. Bound. Elem. 31, 299–310 (2007). [CrossRef]
  37. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 149988–9999 (2006). [CrossRef] [PubMed]
  38. G. Baffou, R. Quidant, and F. J. Garcia De Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010). [CrossRef] [PubMed]
  39. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82, 165424 (2010). [CrossRef]
  40. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41, 1710–1720 (2008). [CrossRef] [PubMed]
  41. “COMSOL Multiphysics with RF module,” www.comsol.com.
  42. J. Jianming, The Finite Element Method in Electromagnetics (Wiley, 2002).
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  44. S.Kawata, ed., “Near-field optics and surface plasmon polaritons,” in Near-Field Spectral Analysis of Metallic Beads (Springer-Verlag, 2001), pp. 99–123.
  45. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  46. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  47. H. L. Tam, K. F. Li, K. W. Cheah, J. B. Xia, R. Huber, W. H. Wong, and Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 1330–1334 (2006). [CrossRef]
  48. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. Van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315(2000). [CrossRef]
  49. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  50. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photon. 2, 234–237 (2008). [CrossRef]
  51. T. H. Taminiau, F. D. Stefani, and N. F. Van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” New J. Phys. 10, 105005(2008). [CrossRef]
  52. N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80, 161407 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited