OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6893–6902

Catastrophes in wavefront-coding spatial-domain design

Shane Barwick  »View Author Affiliations

Applied Optics, Vol. 49, Issue 36, pp. 6893-6902 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (816 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spatial-domain design for wavefront-coding systems frequently simplifies the defining oscillatory integral of the point spread function (PSF) by means of the stationary phase approximation (SPA). Although the SPA applies over much of the support of the PSF, it tends to break down at or near the regions of highest intensity. A branch of mathematics known as catastrophe theory is shown to provide tools that can ferret out important design information precisely at the points where the SPA is unphysical.

© 2010 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(110.0110) Imaging systems : Imaging systems
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: September 23, 2010
Revised Manuscript: November 6, 2010
Manuscript Accepted: November 8, 2010
Published: December 14, 2010

Shane Barwick, "Catastrophes in wavefront-coding spatial-domain design," Appl. Opt. 49, 6893-6902 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. O. Casteñeda, L. R. B. Valdos, and E. Montes, “Ambiguity function as a design tool for high focal depth,” Appl. Opt. 27, 790–795 (1988). [CrossRef]
  2. E. Dowski and W. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef] [PubMed]
  3. G. E. Johnson, P. Silveira, and E. Dowski, “Analysis tools for computational imaging systems,” Proc. SPIE 5817, 34–44 (2005). [CrossRef]
  4. Q. Yang, L. Liu, J. Sun, Y. Zhu, and W. Lu, “Analysis of optical systems with extended depth of field using the Wigner distribution function,” Appl. Opt. 45, 8586–8595 (2006). [CrossRef] [PubMed]
  5. S. Prasad, T. Torgersen, V. P. Pauca, R. Plemmons, and J. van der Gracht, “Pupil phase optimization for extended-focus, aberration-corrected imaging systems,” Proc. SPIE 5559, 335–345 (2004). [CrossRef]
  6. S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” Proc. SPIE 5108, 1–12 (2003). [CrossRef]
  7. T. Vettenburg, N. Bustin, and A. Harvey, “Fidelity optimization for aberration tolerant hybrid imaging systems,” Opt. Express 18, 9220–9228 (2010). [CrossRef] [PubMed]
  8. T. Vettenburg, A. Wood, N. Bustin, and A. Harvey, “Optimality of pupil-phase profiles for increasing the defocus tolerance of hybrid digital-optical imaging systems,” Proc. SPIE 7429, 742903 (2009). [CrossRef]
  9. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009). [CrossRef] [PubMed]
  10. S. Barwick, “Efficient metric for pupil-phase engineering,” Appl. Opt. 46, 7258–7261 (2007). [CrossRef] [PubMed]
  11. S. Barwick, “Increasing the information acquisition volume for iris recognition,” Appl. Opt. 47, 4684–4691 (2008). [CrossRef] [PubMed]
  12. S. Barwick, “Joint fractional Fourier analysis of wavefront-coding systems,” Opt. Lett. 34, 154–156 (2009). [CrossRef] [PubMed]
  13. W. Zhang, Z. Ye, T. Zhao, Y. Chen, and F. Yu, “Point spread function characteristics analysis of wavefront coding systems,” Opt. Express 15, 1543–1552 (2007). [CrossRef] [PubMed]
  14. S. Sherif, W. Cathey, and E. Dowski, “Phase plate to extend depth of field of incoherent hybrid imaging systems,” Appl. Opt. 43, 2709–2721 (2004). [CrossRef] [PubMed]
  15. M. Born and E. Wolf, Principles of Optics (Pergamom, 1985).
  16. R. Thom, Structural Stability and Morphogenesis(Benjamin, 1972).
  17. J. Nye, “Evolution of the hyberbolic umbilic diffraction pattern from Airy rings,” J. Opt. A Pure Appl. Opt. 8, 304–314 (2006). [CrossRef]
  18. F. Wright, G. Dangelmayer, and D. Lang, “Singular coordinate sections of the conic umbilic catastrophes,” J. Phys. A 15, 3057–3071 (1982). [CrossRef]
  19. T. Poston and I. Stewart, Catastrophe Theory and Its Application (Pitman, 1978).
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  21. D. Bertsekas, Nonlinear Programming (Athena Scientific, 1999).
  22. G. Siviloglou and D. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef] [PubMed]
  23. H. Zhao and Y. Li, “Optimized sinusoidal phase mask to extend the depth of field of an incoherent imaging system,” Opt. Lett. 35, 267–269 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited