OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6903–6909

Experimental generation of Mathieu–Gauss beams with a phase-only spatial light modulator

R. J. Hernández-Hernández, R. A. Terborg, I. Ricardez-Vargas, and K. Volke-Sepúlveda  »View Author Affiliations

Applied Optics, Vol. 49, Issue 36, pp. 6903-6909 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel method for the efficient generation of even, odd, and helical Mathieu–Gauss beams of arbitrary order and ellipticity by means of a phase-only spatial light modulator (SLM). Our method consists of displaying the phase of the desired beam in the SLM; the reconstructed field is obtained on-axis following a spatial filtering process with an annular aperture. The propagation invariance and topological properties of the generated beams are investigated numerically and experimentally.

© 2010 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(090.1995) Holography : Digital holography
(070.3185) Fourier optics and signal processing : Invariant optical fields
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: September 23, 2010
Manuscript Accepted: October 26, 2010
Published: December 14, 2010

R. J. Hernández-Hernández, R. A. Terborg, I. Ricardez-Vargas, and K. Volke-Sepúlveda, "Experimental generation of Mathieu–Gauss beams with a phase-only spatial light modulator," Appl. Opt. 49, 6903-6909 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  2. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  3. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953), p. 657.
  4. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44–46 (2004). [CrossRef] [PubMed]
  5. Z. Bouchal and M. Olivik, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42, 1555–1566 (1995). [CrossRef]
  6. K. Volke-Sepúlveda and E. Ley-Koo, “General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states,” J. Opt. A Pure Appl. Opt. 8, 867–877 (2006). [CrossRef]
  7. J. Turunen and A. T. Friberg, “Self-imaging and propagation-invariance in electromagnetic fields,” Pure Appl. Opt. 2, 51–60 (1993). [CrossRef]
  8. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  9. J. C. Gutiérrez-Vega and M. A. Bandres, “Helmholtz—Gauss waves,” J. Opt. Soc. Am. A 22, 289–298 (2005). [CrossRef]
  10. M. A. Bandres and J. C. Gutiérrez-Vega, “Elliptical beams,” Opt. Express 16, 21087–21092 (2008). [CrossRef] [PubMed]
  11. Yaroslav V. Kartashov, Alexey A. Egorov, Victor A. Vysloukh, and Lluis Torner, “Shaping soliton properties in Mathieu lattices,” Opt. Lett. 31, 238–240 (2006). [CrossRef] [PubMed]
  12. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]
  13. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  14. K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quant. Semiclass. Opt. 4, S82–S88 (2002). [CrossRef]
  15. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  16. J. W. R. Tabosa and D. V. Petrov, “Optical pumping of orbital angular momentum of light in cold cesium atoms,” Phys. Rev. Lett. 83, 4967–4970 (1999). [CrossRef]
  17. V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Orbital angular momentum transfer to an optically trapped low-index particle,” Phys. Rev. A 66, 063402 (2002). [CrossRef]
  18. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  19. M. F. Andersen, C. Ryu, P. Clade, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). [CrossRef] [PubMed]
  20. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007). [CrossRef] [PubMed]
  21. S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G. H. C. New, “Elliptic vortices of electromagnetic wave fields,” Opt. Lett. 26, 1803–1805 (2001). [CrossRef]
  22. C. López-Mariscal, J. C. Gutiérrez-Vega, G. Milne, and K. Dholakia, “Orbital angular momentum transfer in helical Mathieu beams,” Opt. Express 14, 4182–4187 (2006). [CrossRef] [PubMed]
  23. A. Ruelas, S. Lopez-Aguayo, and J. C. Gutiérrez-Vega, “Stable solitons in elliptical photonic lattices,” Opt. Lett. 33, 2785–2787 (2008). [CrossRef] [PubMed]
  24. F. Ye, D. Mihalache, and B. Hu, “Elliptic vortices in composite Mathieu lattices,” Phys. Rev. A 79, 053852 (2009). [CrossRef]
  25. B. M. Rodríguez-Lara and R. Jáuregui, “Dynamical constants for electromagnetic fields with elliptic-cylindrical symmetry,” Phys. Rev. A 78, 033813 (2008). [CrossRef]
  26. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramírez, E. Tepichín, R. M. Rodríguez-Dagnino, S. Chávez-Cerda, and G. H. C. New, “Experimental demonstration of optical Mathieu beams,” Opt. Commun. 195, 35–40 (2001). [CrossRef]
  27. S. Chávez-Cerda, M. J. Padgett, I. Allison, G. H. C. New, J. C. Gutiérrez-Vega, A. T. O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of high-order Mathieu beams,” J. Opt. B Quant. Semiclass. Opt. 4, S52–S57 (2002). [CrossRef]
  28. C. López-Mariscal, M. A. Bandrés, and J. C. Gutiérrez-Vega, “Observation of the experimental propagation properties of Helmholtz-Gauss beams,” Opt. Eng. 45, 068001 (2006). [CrossRef]
  29. A. Vasara, J. Turunen, and A. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef] [PubMed]
  30. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt. 32, 6368–6370 (1993). [CrossRef] [PubMed]
  31. V. Arrizón, D. Sánchez-de-la-Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett. 34, 1456–1458 (2009). [CrossRef] [PubMed]
  32. I. Ricardez-Vargas and K. Volke-Sepúlveda, “Experimental generation and dynamical reconfiguration of different circular optical lattices for applications in atom trapping,” J. Opt. Soc. Am. B 27, 948–955 (2010). [CrossRef]
  33. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989). [CrossRef]
  34. J. Arlt, “Handedness and azimuthal energy flow of optical vortex beams,” J. Mod. Opt. 50, 1573–1580 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited