OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6910–6916

Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers

Vahid Sazegari, Mohammad Reza Jafari Milani, and Ahmad Khayat Jafari  »View Author Affiliations

Applied Optics, Vol. 49, Issue 36, pp. 6910-6916 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.

© 2010 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.6810) Lasers and laser optics : Thermal effects
(190.4870) Nonlinear optics : Photothermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 14, 2010
Revised Manuscript: August 27, 2010
Manuscript Accepted: October 22, 2010
Published: December 15, 2010

Vahid Sazegari, Mohammad Reza Jafari Milani, and Ahmad Khayat Jafari, "Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers," Appl. Opt. 49, 6910-6916 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Kamp, G. J. Valentine, and D. Burns, “Review: progress toward high-power, high-brightness neodymium-based thin-disk lasers,” Prog. Quantum Electron. 28, 305–344 (2004). [CrossRef]
  2. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  3. A. K. Jafari and M. Aas, “Continuous-wave theory of Yb:YAG end-pumped thin-disk lasers,” Appl. Opt. 48, 106–113 (2009). [CrossRef]
  4. S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “A model of lasing action in a quasi-four-level thin active media,” IEEE J. Quantum Electron. 46, 871–876 (2010). [CrossRef]
  5. B. Chen, Y. Chen, J. Simmons, T. Y. Chung, and M. Bass, “Thermal lensing of edge-pumped slab lasers-I,” Appl. Phys. B 82, 413–418 (2006). [CrossRef]
  6. S. Toroghi, A. K. Jafari, and A. H. Golpayegani, “The effect of temperature on absorption in end-pumped Yb:YAG thin disk lasers,” Opt. Laser Technol. 41, 800–803 (2009). [CrossRef]
  7. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “Review: on thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006). [CrossRef]
  8. W. Koechner, Solid State Laser Engineering, 6th ed. (Springer, 2006).
  9. D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005). [CrossRef]
  10. B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. Bass, “Modeling of high power solid-state slab lasers,” Proc. SPIE 4968, 1–10 (2003). [CrossRef]
  11. “ANSYS heat flow analysis guide,” ANSYS Inc., Canonsburg, Penna., ANSYS Release 9, Chap. 6 (2007).
  12. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29, 697–703 (1999). [CrossRef]
  13. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “1 kW CW thin disk laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000). [CrossRef]
  14. X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1−x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun. 130, 529–532(2004). [CrossRef]
  15. J. Marion, “Strengthened solid-state laser materials,” Appl. Phys. Lett. 47, 694–696 (1985). [CrossRef]
  16. J. E. Marion, “Fracture of solid state laser slabs,” J. Appl. Phys. 60, 69–77 (1986). [CrossRef]
  17. J. E. Marion, “Appropriate use of the strength parameter in solid-state slab laser design,” J. Appl. Phys. 62, 1595–1604(1987). [CrossRef]
  18. J. Speiser and A. Giesen, “Numerical modeling of high power continuous wave Yb:YAG thin disk lasers, scaling to 14 kW,” in Advanced Solid-State Photonics 2007, OSA Technical Digest (Optical Society of America, 2007), paper WB9.
  19. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited