OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6917–6923

Influence and compensation of autocorrelation terms in depth-resolved spectroscopic Fourier-domain optical coherence tomography

Patrick Steiner, Christoph Meier, and Volker M. Koch  »View Author Affiliations


Applied Optics, Vol. 49, Issue 36, pp. 6917-6923 (2010)
http://dx.doi.org/10.1364/AO.49.006917


View Full Text Article

Enhanced HTML    Acrobat PDF (905 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate depth-resolved spectral absorption measurements in the wavelength range from 750 to 850 nm using a broadband light source consisting of three spectrally shifted superluminescent light- emitting diode modules and a low-cost spectrometer-based Fourier-domain optical coherence tomography system. We present the theoretical model and experimental verification of interferences between autocorrelation terms and the signal carrying cross-correlation terms, strongly affecting the absorption measurements. A simple background subtraction, minimizing the artifacts caused by the interferences of autocorrelation and cross-correlation terms, is presented.

© 2010 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(180.1655) Microscopy : Coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 4, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: November 1, 2010
Published: December 15, 2010

Citation
Patrick Steiner, Christoph Meier, and Volker M. Koch, "Influence and compensation of autocorrelation terms in depth-resolved spectroscopic Fourier-domain optical coherence tomography," Appl. Opt. 49, 6917-6923 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-36-6917


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003). [CrossRef] [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003). [CrossRef] [PubMed]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef] [PubMed]
  6. J. Ai and L. V. Wang, “Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography,” Opt. Lett. 30, 2939–2941 (2005). [CrossRef] [PubMed]
  7. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000). [CrossRef]
  8. X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32, 921–930 (2000). [CrossRef]
  9. D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487–5501 (2004). [CrossRef] [PubMed]
  10. D. J. Faber, E. G. Mik, M. C. G. Alders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436–1438 (2003). [CrossRef] [PubMed]
  11. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015–1017 (2005). [CrossRef] [PubMed]
  12. M. Kinnunen, R. Myllylä, T. Jokela, and S. Vainio, “In vitro studies toward noninvasive glucose monitoring with optical coherence tomography,” Appl. Opt. 45, 2251–2260 (2006). [CrossRef] [PubMed]
  13. A. L. Oldenburg, C. Xu, and S. A. Boppart, “Spectroscopic optical coherence tomography and microscopy,” IEEE J. Quantum Electron. 13, 1629–1640 (2007). [CrossRef]
  14. S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803(2000). [CrossRef] [PubMed]
  15. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367(2003). [CrossRef] [PubMed]
  16. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005). [CrossRef] [PubMed]
  17. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Differential absorption imaging with optical coherence tomography,” J. Opt. Soc. Am. A 15, 2288–2296 (1998). [CrossRef]
  18. B. Hermann, K. Bizheva, A. Unterhuber, B. Považay, H. Sattmann, L. Schmetterer, A. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004). [CrossRef] [PubMed]
  19. R. Leitgeb, M. Wojtkowski, A. Kowalczky, C. K. Hitzenberger, M. Sticker, and A. Fercher, “Spectral measurement of absorption by frequency domain optical coherence tomography,” Opt. Lett. 25, 820–822 (2000). [CrossRef]
  20. B. Hermann, B. Hofer, Ch. Meier, and W. Drexler, “Spectroscopic measurements with dispersion encoded full range frequency domain optical coherence tomography in single- and multilayered non-scattering phantoms,” Opt. Express 17, 24162–24174 (2009). [CrossRef]
  21. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001). [CrossRef] [PubMed]
  22. R. Choe, “Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,” Ph.D. dissertation (University of Pennsylvania, 2005), Appendix 3.8, pp. 81–96.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited