OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6938–6951

Optothermophysical properties of demineralized human dental enamel determined using photothermally generated diffuse photon density and thermal-wave fields

Adam Hellen, Anna Matvienko, Andreas Mandelis, Yoav Finer, and Bennett T. Amaechi  »View Author Affiliations

Applied Optics, Vol. 49, Issue 36, pp. 6938-6951 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (726 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Noninvasive dental diagnostics is a growing discipline since it has been established that early detection and quantification of tooth mineral loss can reverse caries lesions in their incipient state. A theoretical coupled diffuse photon density and thermal-wave model was developed and applied to photothermal radiometric frequency responses, fitted to experimental data using a multiparameter simplex downhill minimization algorithm for the extraction of optothermophysical properties from artificially demineralized human enamel. The aim of this study was to evaluate the reliability and robustness of the advanced fitting algorithm. The results showed a select group of optical and thermal transport parameters and thicknesses were reliably extracted from the computational fitting algorithm. Theoretically derived thicknesses were accurately predicted, within about 20% error, while the estimated error in the optical and thermal property evaluation was within the values determined from early studies using destructive analyses. The high fidelity of the theoretical model illustrates its efficacy, reliability, and applicability toward the nondestructive characterization of depthwise inhomogeneous sound enamel and complex enamel caries lesions.

© 2010 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.1850) Medical optics and biotechnology : Dentistry
(170.5270) Medical optics and biotechnology : Photon density waves
(170.7050) Medical optics and biotechnology : Turbid media
(190.4870) Nonlinear optics : Photothermal effects
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 10, 2010
Revised Manuscript: October 9, 2010
Manuscript Accepted: October 20, 2010
Published: December 15, 2010

Adam Hellen, Anna Matvienko, Andreas Mandelis, Yoav Finer, and Bennett T. Amaechi, "Optothermophysical properties of demineralized human dental enamel determined using photothermally generated diffuse photon density and thermal-wave fields," Appl. Opt. 49, 6938-6951 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Selwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007). [CrossRef] [PubMed]
  2. J. J. M. Damen, R. A. M. Exterkate, and J. M. ten Cate, “Reproducibility of TMR for the determination of longitudinal mineral changes in dental hard tissues,” Adv. Dent. Res. 11, 415–419 (1997). [CrossRef]
  3. J. R. Zijp and J. J. ten Bosch, “Angular dependence of HeNe-laser light scattering by bovine and human dentine,” Arch. Oral Biol. 36, 283–289 (1991). [CrossRef] [PubMed]
  4. D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka, “Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths,” Appl. Opt. 34, 1278–1285(1995). [CrossRef] [PubMed]
  5. C. C. Ko, D. Tantbirojn, T. Wang, and W. H. Douglas, “Optical scattering power for characterisation of mineral loss,” J. Dent. Res. 79, 1584–1589 (2000). [CrossRef] [PubMed]
  6. C. Darling, G. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310nm,” J. Biomed. Opt. 11, 034023 (2006). [CrossRef]
  7. D. Spitzer and J. J. ten Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tissue Res. 17, 129–137 (1975). [CrossRef] [PubMed]
  8. J. C. Ragain and W. M. Johnston, “Accuracy of Kubelka–Munk reflectance theory applied to human dentin and enamel,” J. Dent. Res. 80, 449–452 (2001). [CrossRef] [PubMed]
  9. E. de Josselin de Jong, A. F. Hall, and M. H. van der Veen, “Quantitative light-induced fluorescence detection method: a Monte Carlo simulation model,” in Proceedings of the 1st Annual Indiana Conference. Early Detection of Dental Caries, G.K.Stookey, ed. (Indiana University, 1996), pp. 91–104.
  10. M. H. van der Veen, M. Ando, G. K. Stookey, and E. de Josselin de Jong, “A Monte Carlo simulation of the influence of sound enamel scattering coefficient on lesion visibility in light-induced fluorescence,” Caries Res. 36, 10–18 (2002). [CrossRef] [PubMed]
  11. C. Mujat, M. H. van der Veen, J. L. Ruben, J. J. ten Bosch, and A. Dogariu, “Optical pathlength spectroscopy of incipient caries lesions in relation to quantitative light fluorescence and lesion characteristics,” Appl. Opt. 42, 2979–2986 (2003). [CrossRef] [PubMed]
  12. G. P. Chebotareva, A. P. Nikitin, B. V. Zubov, and A. P. Chebotarev, “Investigation of teeth absorption in the IR range by the pulsed photothermal radiometry,” Proc. SPIE 2080, 117–128 (1993). [CrossRef]
  13. R. J. Jeon, C. Han, A. Mandelis, V. Sanchez, and S. H. Abrams, “Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence,” Caries Res. 38, 497–513 (2004). [CrossRef] [PubMed]
  14. R. J. Jeon, A. Mandelis, V. Sanchez, and S. H. Abrams, “Non-intrusive, non-contacting frequency-domain photothermal radiometry and luminescence depth profilometry of natural carious and artificial sub-surface lesions in human teeth,” J. Biomed. Opt. 9, 804–819 (2004). [CrossRef] [PubMed]
  15. R. J. Jeon, A. Matvienko, A. Mandelis, S. H. Abrams, B. T. Amaechi, and G. Kulkarni, “Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence,” J. Biomed. Opt. 12, 034028 (2007). [CrossRef] [PubMed]
  16. R. J. Jeon, A. Hellen, A. Matvienko, A. Mandelis, S. H. Abrams, and B. T. Amaechi, “In vitro detection and quantification of enamel and root caries using infrared photothermal radiometry and modulated luminescence,” J. Biomed. Opt. 13, 034025 (2008). [CrossRef] [PubMed]
  17. A. Mandelis, Diffusion Wave Fields: Mathematical Methods and Green Functions (Springer, 2001).
  18. A. Matvienko, A. Mandelis, and S. H. Abrams, “Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry,” Appl. Opt. 48, 3193–3204 (2009). [CrossRef]
  19. A. Matvienko, A. Mandelis, R. J. Jeon, and S. H. Abrams, “Theoretical analysis of coupled diffuse-photon-density and thermal-wave field depth profiles photothermally generated in layered turbid dental structures,” J. Appl. Phys. 105, 102022 (2009). [CrossRef]
  20. A. Matvienko, A. Mandelis, A. Hellen, R. J. Jeon, S. H. Abrams, and B. T. Amaechi, “Quantitative analysis of incipient mineral loss in hard tissues,” Proc. SPIE 7166, 71660C (2009). [CrossRef]
  21. J. A. Gray, “Kinetics of the dissolution of human dental enamel in acid,” J. Dent. Res. 41, 633–645 (1962). [CrossRef] [PubMed]
  22. A. Groeneveld, D. J. Purdell-Lewis, and J. Arends, “Influence of the mineral content of enamel on caries-like lesions produced in hydroxyethylcellulose buffer solutions,” Caries Res. 9, 127–138 (1975). [CrossRef] [PubMed]
  23. B. T. Amaechi, S. M. Higham, and W. M. Edgar, “Factors affecting the development of carious lesions in bovine teeth in vitro,” Arch. Oral Biol. 43, 619–628 (1998). [CrossRef] [PubMed]
  24. S. Al-Khateeb, R. A. M. Exterkate, E. de Josselin de Jong, B. Angmar-Månsson, and J. M. ten Cate, “Light-induced fluorescence studies on dehydration of incipient enamel lesions,” Caries Res. 36, 25–30 (2002). [CrossRef] [PubMed]
  25. R. Gmur, E. Giertsen, M. H. van der Veen, E. de Josselin de Jong, J. M. ten Cate, and B. Guggenheim, “In vitro quantitative light-induced fluorescence to measure changes in enamel mineralization,” Clin. Oral Invest. 10, 187–195 (2006). [CrossRef]
  26. E. de Josselin de Jong, A. H. I. M. Linden, and J. J. ten Bosch, “Longitudinal microradiography: a non-destructive automated quantitative method to follow mineral changes in mineralised tissue slices,” Phys. Med. Biol. 32, 1209–1220 (1987). [CrossRef] [PubMed]
  27. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University, 1988).
  28. L. Nicolaides, Y. Chen, A. Mandelis, and I. A. Vitkin, “Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry,” J. Opt. Soc. Am. A 18, 2548–2556 (2001). [CrossRef]
  29. L. W. Ripa, A. J. Gwinnett, and M. G. Buonocore, “The “prismless” outer layer of deciduous and permanent enamel,” Arch. Oral Biol. 11, 41–48 (1966). [CrossRef] [PubMed]
  30. T. Kodaka, M. Kuroiwa, and S. Higashi, “Structural and distribution patterns of surface ‘prismless’ enamel in human permanent teeth,” Caries Res. 25, 7–20 (1991). [CrossRef] [PubMed]
  31. T. Kodaka, “Scanning electron microscopic observations of surface prismless enamel formed by minute crystals in some human permanent teeth,” Anat. Sci. Int. 78, 79–84 (2003). [CrossRef] [PubMed]
  32. A. J. Gwinnett, “The ultrastructure of the “prismless” enamel of permanent human teeth,” Arch. Oral Biol. 12, 381–387 (1967). [CrossRef] [PubMed]
  33. M. Braden, “Heat conduction in normal human teeth,” Arch. Oral Biol. 9, 479–486 (1964). [CrossRef] [PubMed]
  34. W. S. Brown, W. A. Dewey, and H. R. Jacob, “Thermal properties of teeth,” J. Dent. Res. 49, 752–755 (1970). [CrossRef] [PubMed]
  35. G. A. Macho and M. A. Berner, “Enamel thickness of human maxillary molars reconsidered,” Am. J. Phys. Anthropol. 92, 189–200 (1993). [CrossRef] [PubMed]
  36. Y. Minesaki, “Thermal properties of human teeth and dental cements,” Shika Zairyo Kikai 9, 633–646 (1990). [PubMed]
  37. A. J. Panas, S. Żmuda, J. Terpiłowski, and M. Preiskorn, “Investigation of the thermal diffusivity of human tooth hard tissue.” Int. J. Thermophys. 24, 837–848 (2003). [CrossRef]
  38. A. J. Panas, M. Preiskorn, M. Dabrowski, and S. Żmuda, “Validation of hard tooth tissue thermal diffusivity measurements applying an infrared camera,” Infrared Phys. Technol. 49, 302–305 (2007). [CrossRef]
  39. D. Spitzer and J. J. ten Bosch, “Luminescence quantum yields of sound and carious dental enamel,” Calcif. Tissue Res. 24, 249–251 (1977). [CrossRef] [PubMed]
  40. A. Mandelis, L. Nicolaides, and Y. Chen, “Structure and the reflectionless/refractionless nature of parabolic diffusion wave fields,” Phys. Rev. Lett. 87, 020801 (2001). [CrossRef]
  41. B. Angmar-Månsson and J. J. ten Bosch, “Optical methods for the detection and quantification of caries,” Adv. Dent. Res. 1, 14–20 (1987). [CrossRef] [PubMed]
  42. J. R. Zijp, “Optical properties of dental hard tissues,” Ph.D. dissertation (University of Groningen, 2001).
  43. R. G. Craig and F. A. Peyton, “Thermal conductivity of teeth structures, dentin cements, and amalgam,” J. Dent. Res. 40, 411–418 (1961). [CrossRef]
  44. A. Kakaboura and L. Papagiannoulis, “Bonding of resinous materials on primary enamel, in dental hard tissues and bonding,” in Interfacial Phenomena and Related Properties, T.Eliades and C.Watts, eds. (Springer, 2005), pp. 35–51.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited