OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 36 — Dec. 20, 2010
  • pp: 6979–6985

Controlling the polarization dependence of dual-channel directional couplers formed by silicon-on-insulator slot waveguides

Yao-Feng Ma, Ming-Je Sung, and Ding-Wei Huang  »View Author Affiliations

Applied Optics, Vol. 49, Issue 36, pp. 6979-6985 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization dependence of directional couplers (DC) formed by silicon-on-insulator (SOI) slot waveguides was studied, and its applications as highly efficient polarization beam splitters (PBSs) and polarization-independent directional couplers (PIDCs) were investigated. The coupling lengths for the quasi-TE and quasi-TM modes may vary with the waveguide geometry due to structural birefringence; thus numerical simulations of the coupling effects in the directional couplers with different aspect ratios and waveguide spacing were conducted to obtain the optimal design parameters for high efficiency as well as compact device size. The lengths of the coupling regions of the designed PBS and PIDC are 47.61 and 23.13 μm , respectively, and they delivered good performance, with an extinction ratio greater than 20 and 1 dB bandwidth larger than 100 nm . The tolerance of fabrication error in the practical device is also discussed.

© 2010 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: July 21, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 12, 2010
Published: December 15, 2010

Yao-Feng Ma, Ming-Je Sung, and Ding-Wei Huang, "Controlling the polarization dependence of dual-channel directional couplers formed by silicon-on-insulator slot waveguides," Appl. Opt. 49, 6979-6985 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005). [CrossRef]
  2. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000). [CrossRef]
  3. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technol. Lett. 16, 1328–1330 (2004). [CrossRef]
  4. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1376 (2006). [CrossRef]
  5. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005). [CrossRef]
  6. A. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3 μmdirectional coupler polarization splitter by ion exchange,” J. Lightwave Technol. 11, 220–225 (1993). [CrossRef]
  7. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005). [CrossRef]
  8. S. Hsu, “Optical waveguide tap with low polarization dependence and flattened wavelength using a Mach–Zehnder directional coupler,” Appl. Opt. 49, 2434–2440 (2010). [CrossRef]
  9. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, and M. Holgado, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007). [CrossRef] [PubMed]
  10. T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56–58 (2006). [CrossRef] [PubMed]
  11. A. Khanna, A. Säynätjoki, A. Tervonen, R. A. Norwood, and S. Honkanen, “Polarization properties of two-dimensional slot waveguides,” Appl. Opt. 49, 5321–5332 (2010). [CrossRef] [PubMed]
  12. A. Khanna, A. Säynätjoki, A. Tervonen, and S. Honkanen, “Control of optical mode properties in cross-slot waveguides,” Appl. Opt. 48, 6547–6552 (2009). [CrossRef] [PubMed]
  13. N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32, 2131–2133 (2007). [CrossRef] [PubMed]
  14. J. V. Galan, P. Sanchis, . Garcia, J. Blasco, A. Martinez, and J. Martí, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48, 2693–2696(2009). [CrossRef] [PubMed]
  15. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  16. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004). [CrossRef] [PubMed]
  17. N. Feng, R. Sun, L. C. Kimerling, and J. Michel, “Lossless strip-to-slot waveguide transformer,” Opt. Lett. 32, 1250–1252(2007). [CrossRef] [PubMed]
  18. Q. Wang and S. He, “An effective and accurate method for the design of directional couplers,” IEEE J. Sel. Top. Quantum Electron. 8, 1233–1238 (2002). [CrossRef]
  19. W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994). [CrossRef]
  20. J. Van Roey, J. Van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1981). [CrossRef]
  21. W. Huang, C. Xu, S. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. 10, 295–305(1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited