OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 592–600

Fit-sphere unwrapping and performance analysis of 3D fingerprints

Yongchang Wang, Daniel L. Lau, and Laurence G. Hassebrook  »View Author Affiliations


Applied Optics, Vol. 49, Issue 4, pp. 592-600 (2010)
http://dx.doi.org/10.1364/AO.49.000592


View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To solve problems associated with conventional 2D fingerprint acquisition processes including skin deformations and print smearing, we developed a noncontact 3D fingerprint scanner employing structured light illumination that, in order to be backwards compatible with existing 2D fingerprint recognition systems, requires a method of unwrapping the 3D scans into 2D equivalent prints. For the latter purpose of virtually flattening a 3D print, this paper introduces a fit-sphere unwrapping algorithm. Taking advantage of detailed 3D information, the proposed method defuses the unwrapping distortion by controlling the distances between neighboring points. Experimental results will demonstrate the high quality and recognition performance of the 3D unwrapped prints versus traditionally collected 2D prints. Furthermore, by classifying the 3D database into high- and low-quality data sets, we demonstrate that the relationship between quality and recognition performance holding for conventional 2D prints is achieved for 3D unwrapped fingerprints.

© 2010 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.2960) Image processing : Image analysis
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing
(110.6880) Imaging systems : Three-dimensional image acquisition

ToC Category:
Image Processing

History
Original Manuscript: September 21, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: December 8, 2009
Published: January 25, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yongchang Wang, Daniel L. Lau, and Laurence G. Hassebrook, "Fit-sphere unwrapping and performance analysis of 3D fingerprints," Appl. Opt. 49, 592-600 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-4-592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information security,” IEEE Trans. Inf. Forensics Secur. 1, 125-143 (2006). [CrossRef]
  2. S. Pankanti, S. Prabhakar, and A. K. Jain, “On the individuality of fingerprints,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1010-1025 (2002). [CrossRef]
  3. R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 3-18 (2006). [CrossRef] [PubMed]
  4. A. Ross and A. K. Jain, “Information fusion in biometrics,” Pattern Recogn. Lett. 24, 2115-2125 (2003). [CrossRef]
  5. K. G. Larkin and P. A. Fletcher, “A coherent framework for fingerprint analysis: are fingerprints holograms?” Opt. Express 15 (2007). [CrossRef] [PubMed]
  6. J. C. Wu and C. L. Wilson, “Nonparametric analysis of fingerprint data,” NISTIR 7226 (National Institute of Standards and Technology, 2005).
  7. K. Tai, M. Kurita, and I. Fujieda, “Recognition of living fingers with a sensor based on scattered-light detection,” Appl. Opt. 45, 419-424 (2006). [CrossRef] [PubMed]
  8. S. Lin, K. M. Yemelyanov, J. E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137-2153 (2006). [CrossRef]
  9. J. C. Wu and M D. Garris, “Nonparametric statistical data analysis of fingerprint minutiae exchange with two-finger fusion,” NISTIR 7376 (National Institute of Standards and Technology, 2006).
  10. A. Bal, A. M. El-saba, and M. S. Alam, “Improved fingerprint identification with supervised filtering enhancement,” Appl. Opt. 44, 647-654 (2005). [CrossRef] [PubMed]
  11. S. M. Rao, “Method for producing correct fingerprints,” Appl. Opt. 47, 25-29 (2008). [CrossRef]
  12. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Bimodal fingerprint capturing system based on compound-eye imaging module,” Appl. Opt. 43, 1355-1359 (2004). [CrossRef] [PubMed]
  13. R. Hashido, A. Suzuki, A. Iwata, T. Okmoto, Y. Satoh, and M. Inoue, “A capacitive fingerprint sensor chip using low-temperature poly-si TFTs on a glass substrate and a novel and unique sensing method,” IEEE J. Solid-State Circuits 38, 274-280 (2003). [CrossRef]
  14. S. Malassiotis, N. Aifanti, and M. G. Strinzis, “Personal authentication using 3-D finger geometry,” IEEE Trans. Inf. Forensics Secur. 1, 12-21 (2006). [CrossRef]
  15. N. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems (Springer-Verlag2004). [CrossRef]
  16. A. K. Jain and A. Ross, “Fingerprint mosaicking,” in ICASSP, IEEE International Conference on Acoustics, Speech, and Signal Processing-Proceedings (IEEE, 2002), Vol. 4, pp. 4064-4067 (2002).
  17. A. Ross, S. C. Dass, and A. K. Jain, “Estimating fingerprint deformation,” in Biometric Authentication (Springer, 2004), pp. 249-255. [CrossRef]
  18. R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694,90-99 (2005). [CrossRef]
  19. G. Parziale, E. Diaz-Santana, and R. Hauke, “The Surround Imagertrade: a multi-camera touchless device to acquire 3D rolled-equivalent fingerprints,” in Advances in Biometrics, Vol. 3832 of Lecture Notes in Computer Science (Springer, 2005), 244-250.
  20. Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007). [CrossRef]
  21. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48 (2009). [CrossRef] [PubMed]
  22. Y. Chen, G. Parsiale, E. Diaz-Santana, and A. K. Jain, “3D touchless fingerprints: compatibility with legacy rolled images,” in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1-6. [CrossRef]
  23. A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007). [CrossRef]
  24. A. Fatehpuria, D. L. Lau, and L. G. Hassebrook, “Acquiring a 2-D rolled equivalent fingerprint image from a non-contact 3-D finger scan,” Proc. SPIE 6202, 62020C (2006).
  25. S. Zhang and S. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46, 36-43 (2007). [CrossRef]
  26. J. Li, L. G. Hassebrook, and C. Guan, “Optimized two-frequency phase measuring profilometry light-sensor temporal-noise sensitivity,” J. Opt. Soc. Am. A 20, 106-115(2003). [CrossRef]
  27. Y. Wang, K. Liu, D. L. Lau, and L. G. Hassebrook, “Multicamera phase measuring profilometry for accurate depth measurement,” Proc. SPIE 6555, 655509 (2007).
  28. S. Zhang and S. Yau, “Absolute phase-assisted three-dimensional data registration for a dual-camera structured light system,” Appl. Opt. 47, 3134-3142 (2008). [CrossRef] [PubMed]
  29. V. Yalla and L. G. Hassebrook, “Very-high resolution 3D surface scanning using multi-frequency phase measuring profilometry,” Proc. SPIE 5798, 44-53 (2005).
  30. S. Zhang, X. Li, and S. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50-57 (2007). [CrossRef]
  31. J. Wolberg, Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments (Springer2005). [PubMed]
  32. E. Tabassi, C. L. Wilson, and C. I. Watson, “Fingerprint image quality,” NISTIR 7151 (National Institute of Standards and Technology, 2004).
  33. B. Kumar, M. Savvides, C. Xie, K. Venkataramani, J. Thomton, and A. Mahalanobis, “Biometric verification with correlation filters,” Appl. Opt. 43, 391-402 (2004). [CrossRef]
  34. Y. Cheng and K. V. Larin, “Artifical fingerprint recognition by using optical coherence tomography with autocorreclation analysis,” Appl. Opt. 45, 9238-9245 (2006). [CrossRef] [PubMed]
  35. A. Ross and R. Nadgir, “A calibration model for fingerprint sensor interoperability,” Proc. SPIE 6202, 62020B (2006). [CrossRef]
  36. S. D. Walter, “The partial area under the summary ROC curve,” Stat. Med. 24, 2025-2040 (2005). [CrossRef] [PubMed]
  37. J. C. Wu, “Studies of operational measurement of ROC curve on large fingerprint data sets using two-sample bootstrap,” NISTIR 7449 (National Institute of Standards and Technology, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited