OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 619–624

Orientation-selective edge detection and enhancement using the irradiance transport equation

Jorge L. Flores and José A. Ferrari  »View Author Affiliations

Applied Optics, Vol. 49, Issue 4, pp. 619-624 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for orientation-selective edge detection and enhancement based on the irradiance transport equation. The proposed technique distinguishes the sign of the derivative of the intensity pattern along an arbitrarily selected direction. The method is based on the capacity of liquid-crystal displays to generate simultaneously a contrast reverted replica of the image displayed on it. When both images (the original one and its replica) are imagined across a slightly defocused plane, one obtains an image with enhanced first derivatives. Unlike most Fourier methods, the proposed technique works well with a low-coherence light source, and it does not require precise alignment. The proposed method does not involve numerical processing, and thus it could be potentially useful for processing large images in real-time applications. Validation experiments are presented.

© 2010 Optical Society of America

OCIS Codes
(100.2810) Image processing : Halftone image reproduction
(100.2980) Image processing : Image enhancement

ToC Category:
Image Processing

Original Manuscript: October 7, 2009
Manuscript Accepted: December 5, 2009
Published: January 26, 2010

Jorge L. Flores and José A. Ferrari, "Orientation-selective edge detection and enhancement using the irradiance transport equation," Appl. Opt. 49, 619-624 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fak-aim, A. Seanton, and S. Kaitwanidvilai, “Automatic visual inspection of bump in flip chip using edge detection with genetic algorithm,” Proceedings of the International Multiconference of Engineers and Computer Scientists 2008 (International Association of Engineers, 2008), Vol I, pp. 19-21.
  2. B.-L. Liang, Z.-Q. Wang, G.-G. Mu, J.-H. Guan, H.-L. Liu, and C. M. Cartwright, “Real-time edge-enhanced optical correlation with a cerium-doped potassium sodium strontium barium niobate photorefractive crystal,” Appl. Opt. 39, 2925-2930 (2000). [CrossRef]
  3. C. S. Yelleswarapu, S.-R. Kothapalli, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008). [CrossRef] [PubMed]
  4. J. A. Sorenson and C. R. Mitchell, “Evaluation of optical unsharp masking and contrast enhancement of low-scatter chest radiographs,” Am. J. Roentgenol. 149, 275-281 (1987).
  5. P. G. Tahoces, J. Correa, M. Souto, C. Gonzalez, L. Gomez, and J. J. Vidal, “Enhancement of chest and breast radiographs by automatic spatial filtering,” IEEE Trans. Med. Imaging 10, 330-335 (1991). [CrossRef] [PubMed]
  6. R. C. Gonzalez and P. Wintz, Digital Image Processing (Addison-Wesley, 1977).
  7. J. A. Ferrari, J. L. Flores, C. D. Perciante, and E. Frins, “Edge enhancement and image equalization by unsharp masking using self-adaptive photochromic filters,” Appl. Opt. 48, 3570-3579 (2009). [CrossRef] [PubMed]
  8. X. Lin, J. Ohtsubo, and T. Takemori, “Real-time optical image subtraction and edge enhancement using ferroelectric liquid-crystal devices based on speckle modulation,” Appl. Opt. 35, 3148-3155 (1996). [CrossRef] [PubMed]
  9. M. Y. Shih, A. Shishido, and I. C. Khoo, “All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition--subtraction,” Opt. Lett. 26, 1140-1142 (2001). [CrossRef]
  10. J. A. Davis, D. E. McNamara, and D. M. Cotrell, “Analysis of the fractional Hilbert transform,” Appl. Opt. 37, 6911-6913(1998). [CrossRef]
  11. J. A. Davis, D. E. McNamara, and D. M. Cottrell, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett. 25, 99-101 (2000). [CrossRef]
  12. H. Kasprzak, “Differentiation of a noninteger order and its optical implementation,” Appl. Opt. 21, 3287-3291 (1982). [CrossRef] [PubMed]
  13. J. A. Davis, D. A. Smith, D. E. McNamara, D. M. Cottrell, and J. Campos, “Fractional derivatives--analysis and experimental implementation,” Appl. Opt. 40, 5943-5948 (2001). [CrossRef]
  14. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689-694 (2005). [CrossRef] [PubMed]
  15. J. Mazzaferri and S. Ledesma, “Rotation invariant real-time optical edge detector,” Opt. Commun. 272, 367-376 (2007). [CrossRef]
  16. J. A. Davis and M. D. Nowak, “Selective edge enhancement of images with an acousto-optic light modulator,” Appl. Opt. 41, 4835-4839 (2002). [CrossRef] [PubMed]
  17. D. Cao, P. P. Banerjee, and T.-C. Poon, “Image edge enhancement with two cascaded acousto-optic cells with contra propagating sound,” Appl. Opt. 37, 3007-3014 (1998). [CrossRef]
  18. G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26, 1788-1797 (2009). [CrossRef]
  19. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6-10 (1984). [CrossRef]
  20. M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. 73, 1434-1441 (1983). [CrossRef]
  21. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29, 1402-1403 (1990). [CrossRef] [PubMed]
  22. C. D. Perciante, J. A. Ferrari, and A. Dubra, “Visualization of phase objects using incoherent illumination,” Opt. Commun. 183, 15-18 (2000). [CrossRef]
  23. C. D. Perciante and J. A. Ferrari, “Visualization of two-dimensional phase gradients by subtraction of a reference periodic pattern,” Appl. Opt. 39, 2081-2083 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited