OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 648–652

Area measurement at long-distance using a circular Dammann grating

Fung Jacky Wen, Zhongyu Chen, and Po Sheun Chung  »View Author Affiliations


Applied Optics, Vol. 49, Issue 4, pp. 648-652 (2010)
http://dx.doi.org/10.1364/AO.49.000648


View Full Text Article

Enhanced HTML    Acrobat PDF (575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel method of noncontact mode area measurement at long distance of 11.25 m by borrowing the concept of a circular Dammann grating (CDG). The area of objects can be determined accurately by measuring the circular spectrum diameter of the CDG. This noncontact mode measurement requires neither a large amount of image data nor any pattern recognition approach. The spectrum diameter is derived from simple lens formulas. From the fractional Fourier transform, we find that there exists a linear relationship between the spectrum diameter and the distance traveled by the CDG. Compared with the conventional methods, this technique has the advantages of a simple design with good accuracy of better than 3%, low cost, noncontact mode, and a more compact design. Finally, we present several experimental results demonstrating the effectiveness of this system.

© 2010 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(050.1950) Diffraction and gratings : Diffraction gratings
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.3560) Lasers and laser optics : Lasers, ring
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 10, 2009
Revised Manuscript: December 23, 2009
Manuscript Accepted: January 1, 2010
Published: January 26, 2010

Citation
Fung Jacky Wen, Zhongyu Chen, and Po Sheun Chung, "Area measurement at long-distance using a circular Dammann grating," Appl. Opt. 49, 648-652 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-4-648


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Caarullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sensors J. 1, 143-147 (2001). [CrossRef]
  2. P. G. Gulden, D. Becker, and M. Vossiek, “Novel optical distance sensor based on MSM technology,” IEEE Sensors J. 4, 612-618 (2004). [CrossRef]
  3. B. Culshaw, G. Pierce, and J. Pan, “Non-contact measurement of the mechanical properties of materials using an all-optical technique,” IEEE Sensors J. 3, 62-70 (2003). [CrossRef]
  4. A. Yasuda, S. Kuwashima, and Y. Kanai, “Ashipborne-typewave-height mater for oceangoing vessels using microwave Doppler radar,” IEEE J. Ocean. Eng. 10, 138-143 (1985). [CrossRef]
  5. H. Yan, “Image analysis for digital media applications,” IEEE Comput. Graph. Appl. 21, 18-26 (2001). [CrossRef]
  6. R. Cucchiara, M. Piccardi, and P. Mello, “Image analysis and rule-based reasoning for a traffic monitoring system,” IEEE Trans. Intell. Transp. Syst. 1, 119-130 (2000). [CrossRef]
  7. J. F. Wen and P. S. Chung, “2D optical splitters with polymer optical fiber arrays,” J. Opt. A: Pure Appl. Opt. 9, 723-727(2007). [CrossRef]
  8. H. Dammann and K. Gortler, “High-efficiency in line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312-315 (1971). [CrossRef]
  9. H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 4, 505-515 (1977). [CrossRef]
  10. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56, 1502-1509 (1966). [CrossRef]
  11. R. L. Morrison, “Symmetries that simply the design of spot array phase gratings,” J. Opt. Soc. Am. A 9, 464-471 (1992). [CrossRef]
  12. J. N. Mait, “Design of binary-phase and multiphase Fourier gratings for array generation,” J. Opt Soc. Am. A 7, 1514-1528(1990). [CrossRef]
  13. C. Zhou, J. Jia, and L. Liu, “Circular Dammann grating,” Opt. Lett. 28, 2174-2176 (2003). [CrossRef] [PubMed]
  14. S. Zhao and P. S. Chung, “Design of circular Dammann grating,” Opt. Lett. 31, 2387-2389 (2006). [CrossRef] [PubMed]
  15. J. F. Wen, S. Y. Law, and P. S. Chung, “Design of circular Dammann grating (CDG) by employing circular spot rotation method,” Appl. Opt. 46, 5452-5455 (2007). [CrossRef] [PubMed]
  16. J. F. Wen and P. S. Chung, “A new circular Dammann grating using Hankel transform,” J. Opt. A: Pure Appl. Opt. 10, 075206 (2008). [CrossRef]
  17. S. Zhao, J. F. Wen, and P. S. Chung, “Simple focal-length measurement technique with a circular Dammann grating,” Appl. Opt. 46, 44-49 (2007). [CrossRef]
  18. J. F. Wen and P. S. Chung, “The use of circular Dammann grating for angle measurement,” Appl. Opt. 47, 5197-5200(2008). [CrossRef] [PubMed]
  19. J. F. Wen, Z. Y. Chen, and P. S. Chung, “A novel distance measurement technique based on optical fractional Fourier transform OECC,” in Opto-Electronics and Communications Conference, 2008, and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1-2. [CrossRef] [PubMed]
  20. R. N. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, 1978).
  21. H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163-169 (1993). [CrossRef]
  22. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303-309 (1995). [CrossRef] [PubMed]
  23. R. G. Dorsch and A. W. Lohmann, “Fractional Fourier transform used for a lens-design problem,” Appl. Opt. 34, 4111-4112 (1995). [CrossRef] [PubMed]
  24. Z. Zalevsky and D. Mendlovic, “Fractional Wiener filter,” Appl. Opt. 35, 3930-3936 (1996). [CrossRef] [PubMed]
  25. B.-Z. Dong, Y. Zhang, B. Y. Gu, and G. Z. Yang, “Numerical investigation of phase retrieval in a fractional Fourier transform,” J. Opt. Soc. Am. A 14, 2709-2714 (1997). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited