OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 663–667

Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic

E. C. Lins, J. Belasque, Jr., and L. G. Marcassa  »View Author Affiliations


Applied Optics, Vol. 49, Issue 4, pp. 663-667 (2010)
http://dx.doi.org/10.1364/AO.49.000663


View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Citrus canker is a serious disease caused by Xanthomonas citri subsp. citri bacteria, which infects citrus plants (Citrus spp.) leading to large economic losses in citrus production worldwide. In this work, laser induced fluorescence spectroscopy (LIF) was investigated as a diagnostic technique for citrus canker disease in citrus trees at an orchard using a portable optical fiber based spectrometer. For comparison we have applied LIF to leaves contaminated with citrus canker, citrus scab, citrus variegates chlorosis, and Huanglongbing (HLB, Greening). In order to reduce the noise in the data, we collected spectra from ten leaves with visual symptoms of diseases and from five healthy leaves per plant. This procedure is carried out in order to minimize the environmental effect on the spectrum (water and nutrient supply) of each plant. Our results show that this method presents a high sensitivity ( 90 % ), however it does present a low specificity ( 70 % ) for citrus canker diagnostic. We believe that such poor performance is due to the fact that the optical fiber collects light from only a small part of the leaf. Such results may be improved using the fluorescence imaging technique on the whole leaf.

© 2010 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.2530) Spectroscopy : Fluorescence, laser-induced
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Spectroscopy

History
Original Manuscript: May 18, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: September 25, 2009
Published: January 26, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Citation
E. C. Lins, J. Belasque, Jr., and L. G. Marcassa, "Optical fiber laser induced fluorescence spectroscopy as a citrus canker diagnostic," Appl. Opt. 49, 663-667 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-4-663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. W. Schaad, J. B. Jones, and W. Chun, Laboratory Guide for Identification of Plant Pathogenic Bacteria (APS, 2001).
  2. M. Golmohammadi, J. Cubero, J. Penalver, J. M. Quesada, M. M. Lopez, and P. Llop, “Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods,” J. Appl. Microbiol. 103, 2309-2315 (2007).
  3. J. Cubero, J. H. Graham, and T. R. Gottwald, “Quantitative PCR method for diagnosis of citrus bacterial canker,” Appl. Environ. Microbiol. 67, 2849-2852 (2001). [CrossRef]
  4. V. Mavrodieva, L. Levy, and D. W. Gabriel, “Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples,” Phytopathology 94, 61-68 (2004). [CrossRef]
  5. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie 19, 543-578 (1999). [CrossRef]
  6. C. Buschmann and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).
  7. H. K. Lichtenthaler and J. A. Miehé, “Fluorescence imaging as a diagnostic tool for plant stress,” Trends Plant Sci. 2, 316-320 (1997).
  8. Govindjee, “63 years since Kautsky--Chlorophyll A fluorescence,” Australian J. Plant Physiol. 22, 131-160 (1995).
  9. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis--the basics,” Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349 (1991).
  10. L. G. Marcassa, M. C. G. Gasparoto, J. Belasque, Jr., E. C. Lins, F. Dias Nunes, and V. S. Bagnato, “Fluorescence spectroscopy applied to orange trees,” Laser Phys. 16, 884-888 (2006). [CrossRef]
  11. J. Belasque, Jr., M. C. G. Gasparoto, and L. G. Marcassa, “Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy,” Appl. Opt. 47, 1922-1926(2008). [CrossRef]
  12. E. C. Lins, J. Belasque, Jr., and L. G. Marcassa, “Fluorescence spectroscopy applied to orange trees,” Precis. Agric. 10, 319-330 (2009).
  13. J. W. Hyun, N. A. Peres, S. Y. Yi, L. W. Timmer, K. S. Kim, H. M. Kwon, and H. C. Lim, “Development of PCR assays for the identification of species and pathotypes of Elsinoë causing scab on citrus,” Plant Dis. 91, 865-870 (2007).
  14. A. J. G. Simpson, F. C. Reinach, P. Arruda, F. A. Abreu, M. Acencio, R. Alvarenga, L. M. C. Alves, J. E. Araya, G. S. Baia, C. S. Baptista, M. H. Barros, E. D. Bonaccorsi, S. Bordin, J. M. Bové, M. R. S. Briones, M. R. P. Bueno, A. A. Camargo, L. E. A. Camargo, D. M. Carraro, H. Carrer, N. B. Colauto, C. Colombo, F. F. Costa, M. C. R. Costa, C. M. Costa-Neto, L. L. Coutinho, M. Cristofani, E. Dias-Neto, C. Docena, H. El-Dorry, A. P. Facincani, A. J. S. Ferreira, V. C. A. Ferreira, J. A. Ferro, J. S. Fraga, S. C. França, M. C. Franco, M. Frohme, L. R. Furlan, M. Garnier, G. H. Goldman, M. H. S. Goldman, S. L. Gomes, A. Gruber, P. L. Ho, J. D. Hoheisel, M. L. Junqueira, E. L. Kemper, J. P. Kitajima, J. E. Krieger, E. E. Kuramae, F. Laigret, M. R. Lambais, L. C. C. Leite, E. G. M. Lemos, M. V. F. Lemos, S. A. Lopes, C. R. Lopes, J. A. Machado, M. A. Machado, A. M. B. N. Madeira, H. M. F. Madeira, C. L. Marino, M. V. Marques, E. A. L. Martins, E. M. F. Martins, A. Y. Matsukuma, C. F. M. Menck, E. C. Miracca, C. Y. Miyaki, C. B. Monteiro-Vitorello, D. H. Moon, M. A. Nagai, A. L. T. O. Nascimento, L. E. S. Netto, A. Nhani Jr., F. G. Nobrega, L. R. Nunes, M. A. Oliveira, M. C. de Oliveira, R. C. de Oliveira, D. A. Palmieri, A. Paris, B. R. Peixoto, G. A. G. Pereira, H. A. Pereira Jr., J. B. Pesquero, R. B. Quaggio, P. G. Roberto, V. Rodrigues, A. J. de M. Rosa, V. E. de Rosa Jr., R. G. de Sá, R. V. Santelli, H. E. Sawasaki, A. C. R. da Silva, A. M. da Silva, F. R. da Silva, W. A. Silva, J. F. da Silveira, M. L. Z. Silvestri, W. J. Siqueira, A. A. de Souza, A. P. de Souza, M. F. Terenzi, D. Truffi, S. M. Tsai, M. H. Tsuhako, H. Vallada, M. A. Van Sluys, S. Verjovski-Almeida, A. L. Vettore, M. A. Zago, M. Zatz, J. Meidanis, and J. C. Setúbal, “The genome sequence of the plant pathogen Xylella fastidiosa,” Nature 406, 151-157(2000).
  15. J. V. da Graça, “Citrus Greening Disease,” Annu. Rev. Phytopathol. 29, 109-136 (1991).
  16. R. D. Jackson, “Remote sensing of biotic and abiotic plant stress,” Annu. Rev. Phytopathol. 24, 265-287 (1986).
  17. H. Nilsson, “Remote sensing and image analysis in plant pathology,” Annu. Rev. Phytopathol. 33, 489-528 (1995).
  18. J. Blasco, N. Aleixos, J. Gómez, and E. Moltó, “Citrus sorting by identification of the most common defects using multispectral computer vision,” J. Food Eng. 83, 384-393 (2007). [CrossRef]
  19. J. Qin, T. F. Burks, M. S. Kim, K. Chao, and M. A. Ritenour, “Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method,” Sens. Instrum. Food Qual. 2, 168-177 (2008).
  20. D. Balasundarama, T. F. Burksa, D. M. Bulanona, T. Schubertb, and W. S. Lee, “Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit,” Posth. Biol. Technol. 51, 220-226 (2009).
  21. M. Zhang, X. Liu, and M. O'Neill, “Spectral discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analyses,” Int J. Remote Sens. 23, 1095-1107 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited