OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 673–677

Controllable rotation of optical beams with bored helical phases

Stein Alec Baluyot and Nathaniel Hermosa, II  »View Author Affiliations


Applied Optics, Vol. 49, Issue 4, pp. 673-677 (2010)
http://dx.doi.org/10.1364/AO.49.000673


View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We achieve controllable noninterferometric rotation of a bored helical beam by introducing a phase shift exclusively to the annular helical region of the phase. We present a derivation based on the decomposition of the beams, which shows that a constant phase shift of Δ Φ between the bore and the surrounding helical phase with topological charge ℓ will rotate the intensity profile by Δ Φ / about its center. The effect of the phase shifting is verified with experiments. This technique is simple, while it preserves the transverse intensity profiles of the beams. Our report may find applications in optical manipulation and trapping.

© 2010 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(050.4865) Diffraction and gratings : Optical vortices
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: September 21, 2009
Revised Manuscript: December 16, 2009
Manuscript Accepted: December 20, 2009
Published: January 27, 2010

Citation
Stein Alec Baluyot and Nathaniel Hermosa, II, "Controllable rotation of optical beams with bored helical phases," Appl. Opt. 49, 673-677 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-4-673


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997). [CrossRef] [PubMed]
  2. D. McGloin, “Optical tweezers: 20 years on,” Phil. Trans. R. Soc. A 364, 3521-3537 (2006). [CrossRef] [PubMed]
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  4. J. E. Molloy, K. Dholakia, and M. J. Padgett, “Optical tweezers in a new light,” J. Mod. Opt. 50, 1501-1507 (2003).
  5. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002). [CrossRef]
  6. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37, 42-55 (2008). [CrossRef] [PubMed]
  7. D. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett. 28, 740-742 (2003). [CrossRef] [PubMed]
  8. A. Forrester, J. Courtial, and M. J. Padgett, “Performance of a rotating aperture for spinning and orienting objects in optical tweezers,” J. Mod. Opt. 50, 1533-1538 (2003).
  9. A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743-745 (2002). [CrossRef]
  10. M. P. MacDonald, K. Volke-Sepulveda, L. Paterson, J. Arlt, W. Sibbett, and K. Dholakia, “Revolving interference patterns for the rotation of optically trapped particles,” Opt. Commun. 201, 21-28 (2002). [CrossRef]
  11. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23, 1-3 (1998). [CrossRef]
  12. L. Paterson, M. P. MacDonald, J. Arlt, W. Dultz, H. Schmitzer, W. Sibbett, and K. Dholakia, “Controlled simultaneous rotation of multiple optically trapped particles,” J. Mod. Opt. 50, 1591-1599 (2003).
  13. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996). [CrossRef]
  14. S. H. Tao, X-C. Yuan, J. Lin, X. Peng, and H. B. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13, 7726-7731 (2005). [CrossRef] [PubMed]
  15. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657-659 (2003). [CrossRef] [PubMed]
  16. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619-8625 (2007). [CrossRef] [PubMed]
  17. S. A. Baluyot and N. Hermosa, “Intensity profiles and propagation of optical beams with bored helical phase,” Opt. Express 17, 16244-16254 (2009). [CrossRef] [PubMed]
  18. H. L. Royden, Real Analysis, 3rd ed. (Macmillan, 1988).
  19. A. E. Siegman, Lasers, 1st ed. (University Science, 1986).
  20. J. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill, 1968).
  21. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985-990(1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited