OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 724–731

Ultracompact photonic crystal polarization beam splitter based on multimode interference

Ming-Feng Lu, Shan-Mei Liao, and Yang-Tung Huang  »View Author Affiliations

Applied Optics, Vol. 49, Issue 4, pp. 724-731 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the dependence of interference of modes on propagation distance is weak for a TE wave and strong for a TM wave; as a result, the length of the MMI section can be only seven lattice constants. Simulation results show that the insertion losses are 0.32 and 0.89 dB , and the extinction ratios are 14.4 and 17.5 dB for Port 1 (TE mode) and Port 2 (TM mode), respectively.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: September 21, 2009
Revised Manuscript: January 6, 2010
Manuscript Accepted: January 12, 2010
Published: January 28, 2010

Ming-Feng Lu, Shan-Mei Liao, and Yang-Tung Huang, "Ultracompact photonic crystal polarization beam splitter based on multimode interference," Appl. Opt. 49, 724-731 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062(1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489(1987). [CrossRef] [PubMed]
  3. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22, 2842-2846 (2004). [CrossRef]
  4. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  5. M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, “Compact planar 980/1550 nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photon. Technol. Lett. 7, 1180-1182 (1995). [CrossRef]
  6. Z. Li, Z. Chen, and B. Li, “Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference,” Opt. Express 13, 1033-1038 (2005). [CrossRef] [PubMed]
  7. T. Y. Tsai, Z. C. Lee, J. R. Chen, C. C. Chen, Y. C. Fang, and M. H. Cha, “A novel ultra compact two-mode-interference wavelength division multiplexer for 1.5 μm operation,” IEEE J. Quantum Electron. 41, 741-746 (2005). [CrossRef]
  8. X. Jia, S. Luo, and X. Cheng, “Design and optimization of novel ultra-compact SOI multimode interference optical switch,” Opt. Commun. 281, 1003-1007 (2008). [CrossRef]
  9. H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12, 5625-5633 (2004). [CrossRef] [PubMed]
  10. Y. Zhang, Z. Li, and B. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express 14, 2679-2689 (2006). [CrossRef] [PubMed]
  11. Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14, 3887-3892 (2006). [CrossRef] [PubMed]
  12. C. C. Chiang, C. W. Tsai, and S. L. Tsao, “Design and simulation of a novel 32×32 photonic bandgap power switch based on SOI waveguide,” Opt. Commun. 278, 42-47 (2007). [CrossRef]
  13. M. F. Lu and Y. T. Huang, “Design of a photonic crystal taper coupler with different section lengths based on the multimode interference and the mode matching,” Jpn. J. Appl. Phys. 47, 1822-1827 (2008). [CrossRef]
  14. P. K. Wei and W. S. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994). [CrossRef]
  15. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271-1272 (1999). [CrossRef]
  16. Y. Y. Li, M. Y. Li, P. F. Gu, Z. R. Zheng, and X. Liu, “Graded wavelike two-dimensional photonic crystal made of thin films,” Appl. Opt. 47, C70-C74 (2008). [CrossRef] [PubMed]
  17. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15, 1249-1251 (2003). [CrossRef]
  18. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003). [CrossRef]
  19. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005). [CrossRef]
  20. C. Y. Guan, J. H. Shi, and L. B. Yuan, “Photonic crystal polarizing and non-polarizing beam splitters,” Chin. Phys. Lett. 25, 556-558 (2008). [CrossRef]
  21. Y. Morita, Y. Tsuji, and K. Hirayama, “Proposal for a compact resonant-coupling-type polarization splitter based on photonic crystal waveguide with absolute photonic bandgap,” IEEE Photon. Technol. Lett. 20, 93-95 (2008). [CrossRef]
  22. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530-532(2007). [CrossRef] [PubMed]
  23. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104-3106 (2006). [CrossRef] [PubMed]
  24. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13, 7699-7707 (2005). [CrossRef] [PubMed]
  25. R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique 6, 253-262 (1975). [CrossRef]
  26. R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975). [CrossRef]
  27. D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech. 29, 923-933 (1981). [CrossRef]
  28. N. Zhu, D. Dai, and S. He, “A hybrid modeling for the theoretical analysis of reflections in a multimode-interference coupler based on silicon-on-insulator nanowires,” Opt. Commun. 281, 3099-3104 (2008). [CrossRef]
  29. S. M. Liao, “Design and analysis of multimode interference-based photonic crystal polarizing beam splitter,” thesis (National Chiao Tung University, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited