OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 4 — Feb. 1, 2010
  • pp: 752–757

Divided-aperture technique for fluorescence confocal microscopy through scattering media

Wei Gong, Ke Si, and Colin J. R. Sheppard  »View Author Affiliations

Applied Optics, Vol. 49, Issue 4, pp. 752-757 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a diffraction analysis for image formation in fluorescence confocal microscopy with divided apertures. The three-dimensional optical transform function is given, and axial resolution and transverse resolution are investigated. The results show that the employment of a divided-aperture technique in fluorescence confocal microscopy can enhance the rejection of background scattering. In addition, the axial resolution and transverse resolution can be improved by adjusting the width of the divider strip. For a given detector size, an optimum value of the divider strip width is given to obtain the best axial resolution or transverse resolution. The integrated intensity and signal-to-background ratio are also discussed.

© 2010 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.0290) Scattering : Scattering

ToC Category:
Diffraction and Gratings

Original Manuscript: August 27, 2009
Revised Manuscript: December 26, 2009
Manuscript Accepted: December 28, 2009
Published: January 29, 2010

Virtual Issues
Vol. 5, Iss. 4 Virtual Journal for Biomedical Optics

Wei Gong, Ke Si, and Colin J. R. Sheppard, "Divided-aperture technique for fluorescence confocal microscopy through scattering media," Appl. Opt. 49, 752-757 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Grössenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Ann. Phys. 10, 1-39 (1903).
  2. H. Goldman, “Spaltlampenphotographie und -photometrie,” Ophthalmologica 98, 257-270 (1940). [CrossRef]
  3. D. M. Maurice, “Cellular membrane activity in the corneal endothelium of the intact eye,” Experientia 24, 1094-1095(1968). [CrossRef] [PubMed]
  4. C. J. Koester, “A scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19, 1749-1757 (1980). [CrossRef] [PubMed]
  5. C. J. Koester, “Comparison of optical sectioning methods: the scanning slit confocal microscope,” in Handbook of Confocal Microscopy, J. Pawley, ed. (Plenum, 1990).
  6. P. J. Dwyer and C. A. DiMarzio, “Confocal reflectance theta line scanning microscope for imaging human skin in vivo,” Opt. Lett. 31, 942-944 (2006). [CrossRef] [PubMed]
  7. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt. 46, 1843-1851 (2007). [CrossRef] [PubMed]
  8. C. J. R. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express 16, 17031-17038 (2008). [CrossRef] [PubMed]
  9. K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt. 48, 810-817 (2009). [CrossRef] [PubMed]
  10. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in confocal microscope with D-shaped apertures,” Appl. Opt. 48, 3998-4002 (2009). [CrossRef] [PubMed]
  11. W. Gong, K. Si, and C. J. R. Sheppard, “Improvements in confocal microscopy imaging using serrated divided apertures,” Opt. Commun. 282, 3846-3849 (2009). [CrossRef]
  12. P. M. Delaney, M. R. Harris, and R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Appl. Opt. 33, 573-577 (1994). [CrossRef] [PubMed]
  13. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127, 706-713 (2004). [CrossRef] [PubMed]
  14. M. Gu and C. J. R. Sheppard, “Three-dimensional imaging in confocal fluorescent microscopy with annular lenses,” J. Mod. Opt. 38, 2247-2263 (1991). [CrossRef]
  15. T. Wilson, “Optical sectioning in confocal fluorescent microscopes,” J. Microsc. 154, 143-156 (1989). [CrossRef]
  16. M. Gu, T. Tannous, and C. J. R. Sheppard, “Improved axial resolution in confocal fluorescence microscopy using annular pupils,” Opt. Commun. 110, 533-539 (1994). [CrossRef]
  17. M. Gu and C. J. R. Sheppard, “Comparison of three-dimensional imaging properties between two-photon and single-photon fluorescence microscopy,” J. Microsc. 177, 128-137 (1995). [CrossRef]
  18. C. J. R. Sheppard and T. Wilson, “Depth of field in the scanning microscope,” Opt. Lett. 3, 115-117 (1978). [CrossRef] [PubMed]
  19. C. J. R. Sheppard and M. D. Sharma, “Integrated intensity, and imaging through scattering media,” J. Mod. Opt. 48, 1517-1525 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited