OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 838–844

Equi-intensity distribution of optical reflectance in a fibrous turbid medium

Ali Shuaib and Gang Yao  »View Author Affiliations


Applied Optics, Vol. 49, Issue 5, pp. 838-844 (2010)
http://dx.doi.org/10.1364/AO.49.000838


View Full Text Article

Enhanced HTML    Acrobat PDF (782 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light propagation in a fibrous anisotropic scattering medium is quite different from that in an isotropic medium. Both the anisotropic diffuse equation (ADE) and the continuous time random walk (CTRW) theory predict that the equi-intensity profiles of the surface reflectance have an elliptical shape in a fibrous turbid medium. In this study, we simulated the spatially resolved surface reflectance in a fibrous sample using a Monte Carlo model. A parametric equation was used to quantitatively characterize the geometric profiles of the reflectance patterns. The results indicated that the equi-intensity profiles of surface reflectance had elliptical shapes only when evaluated at distances far away from the incident point. The length ratio of the two orthogonal axes of the ellipse was not affected by the sample optical properties when the ratio of reduced scattering coefficients along the two axes is the same. But the relationship between the aforementioned two ratios was different from the predication of ADE theory. Only for fibers of small sizes did the fitted axes ratios approach the values predicted from the ADE theory.

© 2010 Optical Society of America

OCIS Codes
(290.1990) Scattering : Diffusion

ToC Category:
Scattering

History
Original Manuscript: September 16, 2009
Revised Manuscript: December 22, 2009
Manuscript Accepted: January 14, 2010
Published: February 3, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Ali Shuaib and Gang Yao, "Equi-intensity distribution of optical reflectance in a fibrous turbid medium," Appl. Opt. 49, 838-844 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-5-838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798-804(1998). [CrossRef]
  2. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45, 2873 (2000). [CrossRef] [PubMed]
  3. F. K. Forster, A. Kienle, and R. Hibst, “Determination of the optical parameters of dentin from spatially resolved reflectance and transmittance measurements,” Proc. SPIE 4432, 103-109 (2001). [CrossRef]
  4. M. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovitch, H. Asgari, M. Wendland, J. Tsuruda, and D. Norman, “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology (Oak Brook, Ill.) 176, 439-445 (1990).
  5. H. Stark and T. C. Lubensky, “Multiple light scattering in nematic liquid crystals,” Phys. Rev. Lett. 77, 2229 (1996). [CrossRef] [PubMed]
  6. J. Heino, S. Arridge, J. Sikora, and E. Somersalo, “Anisotropic effects in highly scattering media,” Phys. Rev. E 68, 031908(2003). [CrossRef]
  7. P. M. Johnson, B. P. J. Bret, J. G. Rivas, J. J. Kelly, and A. Lagendijk, “Anisotropic diffusion of light in a strongly scattering material,” Phys. Rev. Lett. 89, 243901 (2002). [CrossRef] [PubMed]
  8. L. Dagdug, G. H. Weiss, and A. H. Gandjbakhche, “Effects of anisotropic optical properties on photon migration in structured tissues,” Phys. Med. Biol. 48, 1361 (2003). [CrossRef] [PubMed]
  9. J. C. Hebden, J. J. G. Guerrero, V. Chernomordik, and A. H. Gandjbakhche, “Experimental evaluation of an anisotropic scattering model of a slab geometry,” Opt. Lett. 29, 2518-2520 (2004). [CrossRef] [PubMed]
  10. A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt. 10, 014012-014019 (2005). [CrossRef]
  11. J. Ranasinghesagara, F. Hsieh, and G. Yao, “A photon migration method for characterizing fiber formation in meat analogs,” J. Food Sci. 71, E227-E231 (2006). [CrossRef]
  12. A. Kienle, F. K. Forster, and R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29, 2617-2619 (2004). [CrossRef] [PubMed]
  13. A. Kienle, “Anisotropic light diffusion: an oxymoron?,” Phys. Rev. Lett. 98, 218104 (2007). [CrossRef] [PubMed]
  14. J. Schafer and A. Kienle, “Scattering of light by multiple dielectric cylinders: comparison of radiative transfer and Maxwell theory,” Opt. Lett. 33, 2413-2415 (2008). [CrossRef] [PubMed]
  15. A. Kienle, F. K. Forster, R. Diebolder, and R. Hibst, “Light propagation in dentin: influence of microstructure on anisotropy,” Phys. Med. Biol. 48, N7-N14 (2003). [CrossRef] [PubMed]
  16. A. Kienle, C. D'Andrea, F. Foschum, P. Taroni, and A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16, 9895-9906 (2008). [CrossRef] [PubMed]
  17. H. A. Yousif and E. Boutros, “A FORTRAN code for the scattering of EM plane waves by an infinitely long cylinder at oblique incidence,” Comp. Phys. Commun. 69, 406-414 (1992). [CrossRef]
  18. C. F. Bohern and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  19. L. V. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  20. J. Ranasinghesagara and G. Yao, “Imaging 2D optical diffuse reflectance in skeletal muscle,” Opt. Express 15, 3998-4007(2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited