OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 845–857

Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information

Luis Granero, Vicente Micó, Zeev Zalevsky, and Javier García  »View Author Affiliations


Applied Optics, Vol. 49, Issue 5, pp. 845-857 (2010)
http://dx.doi.org/10.1364/AO.49.000845


View Full Text Article

Enhanced HTML    Acrobat PDF (1280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The resolving power of an imaging system in digital lensless Fourier holographic configuration is mainly limited by the numerical aperture of the experimental setup that is defined by both the restricted CCD size and the presence of a beam splitter cube in front of the CCD. We present a method capable of improving the resolution in such a system configuration based on synthetic aperture (SA) generation by using time-multiplexing tilted illumination onto the input object. Moreover, a priori knowledge about the imaged object allows customized SA shaping by the addition of elementary apertures only in the directions of interest. Experimental results are provided, showing agreement with theoretical predictions and demonstrating a resolution limit corresponding with a synthetic numerical aperture value of 0.45.

© 2010 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(110.0180) Imaging systems : Microscopy
(110.1650) Imaging systems : Coherence imaging
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

History
Original Manuscript: September 14, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: January 7, 2010
Published: February 3, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Luis Granero, Vicente Micó, Zeev Zalevsky, and Javier García, "Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information," Appl. Opt. 49, 845-857 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-5-845


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv. Microskopische Anat. 9, 413-468 (1873). [CrossRef]
  2. M. Françon, “Amélioration de resolution d'optique,” Nuovo Cimento Suppl. 9, 283-290 (1952). [CrossRef]
  3. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497-501 (1955). [CrossRef]
  4. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152-1158 (1986). [CrossRef]
  5. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463-1472 (1966). [CrossRef]
  6. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit II,” J. Opt. Soc. Am. 57, 932-941 (1967). [CrossRef]
  7. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).
  8. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124-126 (1999). [CrossRef]
  9. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424-1426(2003). [CrossRef] [PubMed]
  10. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004). [CrossRef] [PubMed]
  11. M. Ueda and T. Sato, “Superresolution by holography,” J. Opt. Soc. Am. 61, 418-419 (1971). [CrossRef]
  12. M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403-410 (1973). [CrossRef]
  13. T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406-408 (1974). [CrossRef] [PubMed]
  14. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef] [PubMed]
  15. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356-2358 (2008). [CrossRef] [PubMed]
  16. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873-7892 (2009). [CrossRef] [PubMed]
  17. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828(2006). [CrossRef] [PubMed]
  18. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006). [CrossRef] [PubMed]
  19. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993-1000 (2007). [CrossRef] [PubMed]
  20. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy--approaching the linear system limits of optical resolution,” Opt. Express 15, 6651-6663(2007). [CrossRef] [PubMed]
  21. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007). [CrossRef]
  22. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008). [CrossRef]
  23. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260-19270 (2008). [CrossRef]
  24. F. Le Clerc, M. Gross, and L. Collot, “Synthetic aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550-1552 (2001). [CrossRef]
  25. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179-2181 (2002). [CrossRef]
  26. R. Binet, J. Colineau, and J-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41, 4775-4782 (2002). [CrossRef] [PubMed]
  27. Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143-3145 (2002). [CrossRef]
  28. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by two-dimensional dynamic phase grating,” Opt. Express 16, 17107-17118 (2008). [CrossRef] [PubMed]
  29. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008-15022 (2009). [CrossRef] [PubMed]
  30. V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A: Pure Appl. Opt. 11, 125408 (2009). [CrossRef]
  31. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001). [CrossRef] [PubMed]
  32. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002). [CrossRef] [PubMed]
  33. L. Repetto, E. Piano, and C. Pontiggia C, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132-1134 (2004). [CrossRef] [PubMed]
  34. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  35. V. Micó, J. García, Z. Zalevsky, and B. Javidi, “Phase-shifting Gabor holography,” Opt. Lett. 34, 1492-1494 (2009). [CrossRef] [PubMed]
  36. U. Schnars and W. P. Jueptner, Digital Holography (Springer, 2005).
  37. H. Jiang, J. Zhao, J. Di, and Ch. Qin, “Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography,” Opt. Express 17, 18836-18842 (2009). [CrossRef]
  38. G. Pedrini, P. Fröning, J. H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999). [CrossRef]
  39. S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, and G. Pierattini, “Experimental demonstration of the longitudinal image shift in digital holography,” Opt. Eng. 42, 1625-1630 (2003). [CrossRef]
  40. http://www.schott.com/advanced_optics/english/download/datasheet_all_english.pdf.
  41. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744-1761 (2008). [CrossRef]
  42. D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited