OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 858–870

Energy collection efficiency of holographic planar solar concentrators

Jose M. Castro, Deming Zhang, Brian Myer, and Raymond K. Kostuk  »View Author Affiliations

Applied Optics, Vol. 49, Issue 5, pp. 858-870 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the energy collection properties of holographic planar concentrator systems. The effects of solar variation on daily and annual energy collection are evaluated. Hologram diffraction efficiency, polarization, crosstalk in cascaded elements, and constraints imposed by the radiance theorem, as well as solar illumination characteristics, are considered. A planar holographic solar concentrator configuration is designed and modeled to maximize energy collection efficiency during the course of a year without the need for tracking. Results indicated that nearly 50% of the available energy illuminating hologram areas can be collected by photovoltaic cells without the need of tracking.

© 2010 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.7330) Holography : Volume gratings
(220.1770) Optical design and fabrication : Concentrators
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: September 17, 2009
Revised Manuscript: December 17, 2009
Manuscript Accepted: January 12, 2010
Published: February 3, 2010

Jose M. Castro, Deming Zhang, Brian Myer, and Raymond K. Kostuk, "Energy collection efficiency of holographic planar solar concentrators," Appl. Opt. 49, 858-870 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Deng and W. A. Schiff, “Amorphous silicon-based solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2002), pp. 505-566.
  2. W. N. Shafarman and L. Stolt, “Cu(InGa)Se2 Solar Cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2002), pp. 567-616.
  3. B. E. McCandless and J. R. Sites, “Cadmium telluride solar cells,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2002), pp. 617-700.
  4. M. A. Green, Third Generation Photovoltaics (Springer, 2003), pp. 2-4.
  5. J. Ludman, “Holographic solar concentrator,” Appl. Opt. 21, 3057-3058 (1982). [CrossRef] [PubMed]
  6. C. G. Stojanoff, “Review of the technology for the manufacturing of large-format DCG holograms for technical applications,” Proc. SPIE 3011, 267-278 (1997). [CrossRef]
  7. W. H. Bloss, M. Griesinger, and E. R. Reinhardt, “Dispersive concentrating systems based on transmission phase holograms for solar applications,” Appl. Opt. 21, 3739-3742 (1982). [CrossRef] [PubMed]
  8. J. Ludman and J. Riccobon, “Holographic solar concentrator for terrestrial photovoltaics,” in Conference Record of the 1994 IEEE First World Conference on Photovoltaic Energy Conversion (IEEE, 1994).
  9. A. G. Imenes and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mat. Sol. Cells 84, 19-69 (2004). [CrossRef]
  10. E. U. Wagemann, K. Froehlich, J. Schulat, H. Schuette, and C. G. Stojanoff, “Design and optimization of a holographic concentrator for two-color PV operation,” Proc. SPIE 2017, 252-263(1993). [CrossRef]
  11. C. Bainier, C. Hernandez, and D. Courjon, “Solar concentrating systems using holographic lenses,” Solar Wind Technol. 5, 395-404 (1988). [CrossRef]
  12. W. T. Welford and R. Winston, “Nonconventional optical sytems and the brightness theorem,” Appl. Opt. 21, 1531-1533 (1982). [CrossRef] [PubMed]
  13. R. Alferness and S. K. Case, “Coupling in doubly exposed, thick holographic gratings,” J. Opt. Soc. Am. 65, 730-739 (1975) [CrossRef]
  14. J. R. Riccobono and J. E. Ludman, “Solar holography,” in Holography for the New Millennium (Springer, 2002).
  15. Prism Solar Technologies, www.prismsolar.com. Private communication with Glenn Rosenberg CTO. Mass production cost of holographic collector ~$4.00/m2 versus ~$200−$400/m2 for silicon feedstock.
  16. E. Lorenzo, “Energy collected and delivered by PV modules,” in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus, eds. (Wiley, 2002), pp. 906-930.
  17. D. R. Myers, K. Emery, and C. Gueymard, “Terrestrial solar spectral modeling tools and applications for photovoltaic devices,” in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, (IEEE, 2002). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  19. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105-1112 (1983). [CrossRef]
  20. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1998).
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  22. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).
  23. Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005). [CrossRef]
  24. A. Luque, Solar Cells and Optics for Photovoltaic Concentration (Institute of Physics, 1989), pp. 305, 355.
  25. R. Winston, J. C. Minaño, and P. Benitez, Nonimaging Optics (Elsevier, 2005) pp. 43-68.
  26. P. Benites and J. C. Miñano, “Concentrator optics for next-generation photovoltaics,” in Next Generation Photovoltaics, A. Marti and A. Luque, eds. (Institute of Physics, 2004), pp. 285-322.
  27. J. Nilsson, M. Brogren, A. Helgesson, A. Roos, and B. Karlsson, “Biaxial model for the incidence angle dependence of the optical efficiency of photovoltaic systems with asymmetric reflectors,” Solar Energy 80, 1199-1212 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited