OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 875–879

Direct image of surface-plasmon-coupled emission by leakage radiation microscopy

Douguo G. Zhang, Xiaocong Yuan, and Alexandre Bouhelier  »View Author Affiliations


Applied Optics, Vol. 49, Issue 5, pp. 875-879 (2010)
http://dx.doi.org/10.1364/AO.49.000875


View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Leakage radiation microscopy (LRM) is used to directly image surface-plasmon-coupled emission (SPCE). When compared with the prism-based setup commonly used in SPCE research, LRM has the advantages of directly giving out the emitting direction without angle scanning, and the image generated of surface plasmon polariton (SPPs) propagation, which helps to understand the optical process of SPCE. LRM also can give a clearer SPCE image than that obtained by a prism-based setup. Based on the LRM, we find that the SPCE pattern and propagation of SPPs can be modified by the shape of PMMA films containing fluorescence molecules.

© 2010 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Microscopy

History
Original Manuscript: October 22, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 18, 2010
Published: February 4, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Douguo Zhang, Xiaocong Yuan, and Alexandre Bouhelier, "Direct image of surface-plasmon-coupled emission by leakage radiation microscopy," Appl. Opt. 49, 875-879 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-5-875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435-439 (2003). [CrossRef] [PubMed]
  2. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324, 170-182 (2004). [CrossRef]
  3. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153-169 (2004). [CrossRef]
  4. N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168-2173 (2004). [CrossRef] [PubMed]
  5. D. S. Smith, Y. Kostov, and G. Rao, “Signal enhancement of surface plasmon-coupled directional emission by a conical mirror,” Appl. Opt. 47, 5229-5234 (2008). [CrossRef] [PubMed]
  6. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568-12574 (2004). [CrossRef] [PubMed]
  7. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491, 173-176 (2005). [CrossRef]
  8. K. Ray, H. Szmacinski, J. Enderlein, and J. R. Lakowicz, “Distance dependence of surface plasmon-coupled emission observed using Langmuir-Blodgett films,” Appl. Phys. Lett. 90, 251116 (2007). [CrossRef] [PubMed]
  9. H. M. Hiep, M. Fujii, and S. Hayashi, “Effects of molecular orientation on surface-plasmon-coupled emission patterns,” Appl. Phys. Lett. 91, 183110 (2007). [CrossRef]
  10. R. S. Sathish, Y. Kostov, and G. Rao, “Spectral resolution of molecular ensembles under ambient conditions using surface plasmon coupled fluorescence emission,” Appl. Opt. 48, 5348-5353 (2009). [CrossRef] [PubMed]
  11. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893-895 (2005). [CrossRef] [PubMed]
  12. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007). [CrossRef]
  13. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006). [CrossRef]
  14. D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, “Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film,” Appl. Phys. Lett. 95, 101102 (2009). [CrossRef]
  15. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008). [CrossRef]
  16. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: plasmonic continuum spectroscopy,” Phys. Rev. B 71, 195406 (2005). [CrossRef]
  17. A. Bouhelier, Th. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404(2001). [CrossRef]
  18. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited