OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 880–886

Spectral irradiance model for tungsten halogen lamps in 340 850 nm wavelength range

Maija Ojanen, Petri Kärhä, and Erkki Ikonen  »View Author Affiliations

Applied Optics, Vol. 49, Issue 5, pp. 880-886 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (638 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340 850 nm . The model consists of the Planck’s radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

© 2010 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 14, 2009
Revised Manuscript: December 21, 2009
Manuscript Accepted: January 11, 2010
Published: February 4, 2010

Maija Ojanen, Petri Kärhä, and Erkki Ikonen, "Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range," Appl. Opt. 49, 880-886 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. White, N. P. Fox, V. E. Ralph, and N. J. Harrison, “The characterization of a high-temperature black body as the basis for the NPL spectral-irradiance scale,” Metrologia 32, 431-434 (1995). [CrossRef]
  2. P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267-271 (1998). [CrossRef]
  3. V. I. Sapritskii, “National primary radiometric standards of the USSR,” Metrologia 27, 53-60 (1990). [CrossRef]
  4. H. W. Yoon, G. E. Gibson, and P. Y. Barnes, “The realization of the NIST detector-based spectral irradiance scale,” Metrologia 40, S172 (2003). [CrossRef]
  5. L. P. Boivin, “Calibration of incandescent lamps for spectral irradiance by means of absolute radiometers,” Appl. Opt. 19, 2771-2780 (1980). [CrossRef] [PubMed]
  6. P. Corredera, A. Corróns, A. Pons, and J. Campos, “Absolute spectral irradiance scale in the 700-2400 nm spectral range,” Appl. Opt. 29, 3530-3534 (1990). [CrossRef] [PubMed]
  7. T. Kübarsepp, P. Kärhä, F. Manoocheri, S. Nevas, L. Ylianttila, and E. Ikonen, “Spectral irradiance measurements of tungsten lamps with filter radiometers in the spectral range 290 nm to 900 nm,” Metrologia 37, 305-312 (2000). [CrossRef]
  8. Y. J. Liu, G. Xu, M. Ojanen, and E. Ikonen, “Spectral irradiance comparison using a multi-wavelength filter radiometer,” Metrologia 46, S181-S185 (2009). [CrossRef]
  9. J. C. de Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690-714 (1954). [CrossRef]
  10. R. D. Larrabee, “The spectral emissivity and optical properties of tungsten,” Technical Report 328 (Research Laboratory of Electronics, Massachusetts Institute of Technology, 1957).
  11. J. H. Walker, R. D. Saunders, J. K. Jackson, and D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” Natl. Bur. Stand. (U.S.) Spec. Publ. 250-20, 25 (1987).
  12. G. Andor, “New data-reduction method in detector-based spectral irradiance measurements,” Metrologia 32, 495-496 (1995). [CrossRef]
  13. G. Andor, “Approximation function of spectral irradiance of standard lamps,” Metrologia 35, 427-429 (1998). [CrossRef]
  14. L. Ylianttila, K. Jokela, and P. Kärhä, “Ageing of DXW-lamps,” Metrologia 40, S120-S123 (2003). [CrossRef]
  15. R. M. Pon and J. P. Hessler, “Spectral emissivity of tungsten: analytic expressions for the 340 nm to 2.6 μm spectral region,” Appl. Opt. 23, 975-976 (1984). [CrossRef] [PubMed]
  16. L. Fu, R. Leutz, and H. Ries, “Physical modeling of filament light sources,” J. Appl. Phys. 100, 103528 (2006). [CrossRef]
  17. L. Fu, “Increasing the brightness of light sources,” Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Philipps Universität, 2006).
  18. Y. S. Toukolan and C. Y. Ho, Thermophysical Properties of Matter 7, Thermal Radiative Properties--Metallic Elements and Alloys (IFI/Plenum, 1970).
  19. R. H. Knibbs, “The measurement of thermal expansion coefficient of tungsten at elevated temperatures,” J. Phys. E 2, 515-517 (1969). [CrossRef]
  20. P. N. V'Yugov and V. S. Gumenyuk, “Thermal expansion of tungsten and tantalum in the range 1500-3000 °C,” High Temp. 3, 879-880 (1965).
  21. F. J. Studer and R. F. VanBeers, “Modification of spectrum of tungsten filament quartz-iodine lamps due to iodine vapor,” J. Opt. Soc. Am. 54, 945-947 (1964). [CrossRef]
  22. E. R. Woolliams, N. P. Fox, M. G. Cox, P. M. Harris, and N. J. Harrison, “Final report on CCPR-K1.a: Spectral irradiance from 250 nm to 2500 nm,” Metrologia 43, (Tech. Suppl.) 02003(2006). [CrossRef]
  23. G. A. W. Rutgers and J. C. de Vos, “Relation between brightness, temperature, true temperature and colour temperature of tungsten. Luminance of tungsten,” Physica 20, 715-720(1954). [CrossRef]
  24. W. E. Forsythe and E. M. Watson, “Resistance and radiation of tungsten as a function of temperature,” J, Opt. Soc. Am. 24, 114-118 (1934). [CrossRef]
  25. G. A. Zhorov, “Electrical resistivity and emissivity of some transition metals and alloys in the high-temperature range,” High Temp. 10, 1202-1204 (1972).
  26. B. Wilthan, C. Cagran, and G. Pottlacher, “Combined DSC and pulse-heating measurements of electrical resistivity and enthalpy of tungsten, niobium, and titanium,” Int. J. Thermophys. 26, 1017-1029 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited