OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 910–914

Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry

Seung Hwan Kim, Seoung Hun Lee, Jae In Lim, and Kyong Hon Kim  »View Author Affiliations


Applied Optics, Vol. 49, Issue 5, pp. 910-914 (2010)
http://dx.doi.org/10.1364/AO.49.000910


View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a simple method of measuring the absolute values of the phase refractive index of an optical material of a flat plate shape over a wide spectral range at a single measurement run. A white-light interferometric technique with angle rotation of the optical plate sample located in one of the interfer ometer arms was used in this method. The validity of this method was proved by measuring the absolute phase refractive indices of flat plate samples of fused silica and BK7, and by comparing them with calculated values from their well-known Sellmeier dispersion formulas. The accuracy of this refractive index measurement method was within 0.002, which can be further improved by enhancing the angle measurement accuracy of the angle rotating stage used in this method.

© 2010 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5710) Instrumentation, measurement, and metrology : Refraction
(160.4760) Materials : Optical properties

ToC Category:
Interferometry

History
Original Manuscript: November 18, 2009
Revised Manuscript: January 11, 2010
Manuscript Accepted: January 18, 2010
Published: February 8, 2010

Citation
Seung Hwan Kim, Seoung Hun Lee, Jae In Lim, and Kyong Hon Kim, "Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry," Appl. Opt. 49, 910-914 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-5-910


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323-3336 (1998). [CrossRef]
  2. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901-2908 (1973). [CrossRef] [PubMed]
  3. M. Debenham, G. D. Dew, and D. E. Putland, “An improved recording refractometer for optical glasses in the wavelength range 300 to 2600 nm,” Opt. Acta 26, 1487-1503 (1979). [CrossRef]
  4. D. J. Gettemy, W. C. Harker, G. Lindholm, and N. P. Barnes, “Some optical properties of KTP, LiIO3, and LiNbO3,” IEEE J. Quantum Electron. 24, 2231-2237 (1988). [CrossRef]
  5. G. H. Meeten, “Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials,” Meas. Sci. Technol. 8, 728-733 (1997). [CrossRef]
  6. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601-605 (1997). [CrossRef]
  7. S. Singh, “Refractive index measurement and its applications,” Phys. Scr. 65, 167-180 (2002). [CrossRef]
  8. M. S. Shumate, “Interferometric measurement of large indices of refraction,” Appl. Opt. 5, 327-331 (1966). [CrossRef] [PubMed]
  9. J. F. H. Nicholls, B. Henderson, and B. H. T. Chai, “Accurate determination of the indices of refraction of nonlinear optical crystals,” Appl. Opt. 36, 8587-8594 (1997). [CrossRef]
  10. K. Betzler, A. Gröne, N. Schmidt, and P. Voigt, “Interferometric measurement of refractive indices,” Rev. Sci. Instrum. 59, 652-653 (1988). [CrossRef]
  11. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4, 105-107 (1992). [CrossRef]
  12. D. F. Murphy and D. A. Flavin, “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39, 4607-4615 (2000). [CrossRef]
  13. G. Coppola, P. Ferraro, M. Iodice, and S. De Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Appl. Opt. 42, 3882-3887 (2003). [CrossRef] [PubMed]
  14. H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, and M. Haruna, “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Appl. Opt. 41, 1315-1322 (2002). [CrossRef] [PubMed]
  15. T. Fukano and I. Yamaguchi, “Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope,” Appl. Opt. 38, 4065-4073 (1999). [CrossRef]
  16. D. Bhattacharyya, A. Ray, B. K. Dutta, and P. N. Ghosh, “Direct measurement on transparent plates by using Fizeau interferometry,” Opt. Laser Technol. 34, 93-96 (2002). [CrossRef]
  17. J. C. Martínez-Antón and E. Bemabeu, “Simultaneous determination of film thickness and refractive index by interferential spectrogoniometry,” Opt. Commun. 132, 321-328 (1996). [CrossRef]
  18. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008). [CrossRef] [PubMed]
  19. H. J. Choi, H. H. Lim, B. J. Kim, and M. Cha, “Measurement of the birefringence in bulk optical media by using interferometric methods,” J. Korean Phys. Soc. 53, 3197-3200 (2008). [CrossRef]
  20. H. J. Choi, B. J. Kim, H. H. Lim, and M. Cha, “Measurement of the refractive indices of glass and anisotropic crystal by using a Michelson interferometer,” J. Korean Phys. Soc. 53, 489-494 (2006).
  21. D. S. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Simultaneous measurement of thickness and refractive index of transparent material using a collimated beam having a finite radius,” Hankook Kwanghak Hoeji (Korean) 20, 29-33 (2009). [CrossRef]
  22. S. H. Lee, S. H. Kim, K. H. Kim, M. H. Lee, and E.-H. Lee, “A novel method for measuring continuous dispersion spectrum of electro-optic coefficients of nonlinear materials,” Opt. Express 17, 9828-9833 (2009). [CrossRef] [PubMed]
  23. I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials,” Opt. Lett. 30, 2363-2365 (2005). [CrossRef] [PubMed]
  24. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 1-3 (2005). [CrossRef]
  25. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15, 11413-11423 (2007). [CrossRef] [PubMed]
  26. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2260 (1995). [CrossRef] [PubMed]
  27. P. H. Tomlins, P. Woolliams, C. Hart, A. Beaumont, and M. Tedaldi, “Optical coherence refractometry,” Opt. Lett. 33, 2272-2274 (2008). [CrossRef] [PubMed]
  28. J. Y. Lee and D. Y. Kim, “Spectrum-sliced Fourier-domain low-coherence interferometry for measuring the chromatic dispersion of an optical fiber,” Appl. Opt. 46, 7289-7296 (2007). [CrossRef] [PubMed]
  29. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338-1342(1994). [CrossRef]
  30. Schott, http://www.schott.com/advanced_optics/german/download/opticalglassdatasheetsv260208.xls.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited