OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 5 — Feb. 10, 2010
  • pp: 920–926

Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders

Ming-Je Sung, Yao-Feng Ma, Yuan-Fong Chau, and Ding-Wei Huang  »View Author Affiliations

Applied Optics, Vol. 49, Issue 5, pp. 920-926 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hexagonal nanostructure formed by seven core shell nanocylinders filled with different dielectric cores is investigated. The surface plasmon resonance in such a hexagonal nanostructure under conditions of different illumination wavelengths, dielectric cores, angles of incidence, and thicknesses of silver shells is studied by use of the finite element method. Simulation results show that the resonant wavelength is redshifted as the dielectric constant and the size of the core increase. The peak resonant wavelength and the local field enhancement are approximately proportional to the radius of the dielectric core. Additionally, the surface plasmon field excited by TM-polarized light at the incident angle of θ = 15 ° is exactly a linear combination of those excited at incident angles of θ = 0 ° and 30 ° , confirming the linear nature of the surface plasmon resonance in a nanostructure formed by linear media.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: November 11, 2009
Manuscript Accepted: December 28, 2009
Published: February 9, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Ming-Je Sung, Yao-Feng Ma, Yuan-Fong Chau, and Ding-Wei Huang, "Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders," Appl. Opt. 49, 920-926 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol. 14, 13-22 (2003). [CrossRef] [PubMed]
  2. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002). [CrossRef]
  3. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano. Lett. 5, 829-834 (2005). [CrossRef] [PubMed]
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics: a route to nanoscale optical devices,” Adv. Mater. 13, 1501-1505 (2001). [CrossRef]
  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  6. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34, 257-264 (2001). [CrossRef] [PubMed]
  7. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002). [CrossRef] [PubMed]
  8. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757-1760 (2000). [CrossRef] [PubMed]
  9. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  11. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. (Leipzig) 330, 377-445 (1908). [CrossRef]
  12. M. Y. Ng and W. C. Liu, “Local field enhancement of asymmetric metallic nanocylinder pair,” J. Korean Phys. Soc. 47, S135-S139 (2005).
  13. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005). [CrossRef]
  14. M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  15. H. L. Tam, K. W. Cheah, J. B. Huber, W. H. Wong, and Y. B. Pun, “Surface plasmon coupling in hexagonal textured metallic microcavity,” Appl. Phys. Lett. 89, 131123 (2006). [CrossRef]
  16. H. L. Tam, R. Huber, K. F. Li, W. H. Wong, Y. B. Pun, J. B. Xia, and K. W. Cheah, “Surface plasmon coupling in hexagonal textured metallic microcavity,” IEEE J. Sel. Areas Commun. 23, 1330-1333 (2005). [CrossRef]
  17. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef] [PubMed]
  18. E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano. Lett. 3, 1411-1415 (2003). [CrossRef]
  19. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  20. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257-259 (2003). [CrossRef]
  21. Y. Zhang, X. Wang, Y. Wang, H. Liu, and J. Yang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452, 473-477 (2008). [CrossRef]
  22. P. M. Gresho and R. L. Sani, Incompressible Flow and Finite Element Method (Wiley, 2000), Vols. 1 and 2.
  23. COMSOL Multiphysics, http://www.comsol.com (email: info@comsol.com).
  24. P. B. Johnson and R. W. Christy, “Optical constant of the noble metal,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  25. T. Okamoto, Near-Field Spectral Analysis of Metallic Beads (Springer, 2001), p. 99.
  26. Y. F. Chau, H. H. Yeh, and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair,” Appl. Opt. 47, 5557-5561 (2008). [CrossRef] [PubMed]
  27. P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451-17454 (2007). [CrossRef]
  28. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  29. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  30. J. Kottmann and O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8, 655-663 (2001). [CrossRef] [PubMed]
  31. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885-889(2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited