OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 6 — Feb. 20, 2010
  • pp: 1041–1053

Modeling of wave-induced irradiance fluctuations at near-surface depths in the ocean: a comparison with measurements

Yu You, Dariusz Stramski, Miroslaw Darecki, and George W. Kattawar  »View Author Affiliations


Applied Optics, Vol. 49, Issue 6, pp. 1041-1053 (2010)
http://dx.doi.org/10.1364/AO.49.001041


View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a computationally fast radiative transfer model for simulating the fluctuations of the underwater downwelling irradiance E d at near-surface depths, which occur due to focusing of sunlight by wind-driven surface waves. The model is based on the hybrid matrix operator–Monte Carlo method, which was specifically designed for simulating radiative transfer in a coupled atmosphere–surface–ocean system involving a dynamic ocean surface. In the current version of the model, we use a simplified description of surface waves, which accounts for surface slope statistics, but not surface wave elevation, as a direct source of underwater light fluctuations. We compare the model results with measurements made in the Santa Barbara Channel. The model-simulated and measured time series of E d ( t ) show remarkable similarity. Major features of the probability distribution of instantaneous irradiance, the frequency content of irradiance fluctuations, and the statistical properties of light flashes produced by wave focusing are also generally consistent between the model simulations and measurements for a few near-surface depths and light wavelengths examined. Despite the simplification in the representation of surface waves, this model provides a reasonable first-order approximation to modeling the wave focusing effects at near-surface depths, which require high temporal and spatial resolution (of the order of 1 ms and 1 mm , respectively) to be adequately resolved.

© 2010 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 29, 2009
Revised Manuscript: January 6, 2010
Manuscript Accepted: January 23, 2010
Published: February 19, 2010

Citation
Yu You, Dariusz Stramski, Miroslaw Darecki, and George W. Kattawar, "Modeling of wave-induced irradiance fluctuations at near-surface depths in the ocean: a comparison with measurements," Appl. Opt. 49, 1041-1053 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-6-1041

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited