OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 6 — Feb. 20, 2010
  • pp: 936–944

Characterization of the loss of plasmonic modes in planar metal–insulator–metal waveguides by a coupling-simulation approach

Chien-I Lin and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 49, Issue 6, pp. 936-944 (2010)
http://dx.doi.org/10.1364/AO.49.000936


View Full Text Article

Enhanced HTML    Acrobat PDF (714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal–insulator–metal (MIM) structures have been the subject of great interest as nanoscale plasmonic waveguides. The modeling and measurement of the loss in these waveguides is one of the critical issues in realizing the plasmon-based nanocircuitry. Due to the subwavelength size of the structure, the light injection and the measurement of the loss in MIM structures typically require tapered fibers or waveguides, as well as multiple waveguide structures with various length scales [8, 9] or scanning near-field optical microscopy. The transverse transmission/reflection (TTR) method is presented for determining the loss of plasmonic modes in MIM waveguides. The approach is based on determining the width of the reflection angular spectrum in the attenuated total reflection configuration. Owing to its transverse character, the TTR method potentially provides a more straightforward and simpler way to determine the loss of plasmonic modes in MIM structures.

© 2010 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

History
Original Manuscript: October 13, 2009
Manuscript Accepted: January 12, 2010
Published: February 10, 2010

Citation
Chien-I Lin and Thomas K. Gaylord, "Characterization of the loss of plasmonic modes in planar metal-insulator-metal waveguides by a coupling-simulation approach," Appl. Opt. 49, 936-944 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-6-936


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  3. S. A. Maier, “Plasmonics: the promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2006). [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). [CrossRef] [PubMed]
  5. E. Feigenbaum and M. Orenstein, “Modeling of complementary (void) plasmon waveguiding,” J. Lightwave Technol. 25, 2547-2562 (2007). [CrossRef]
  6. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20-27 (2006). [CrossRef]
  7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  8. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84, 852-854(2004). [CrossRef]
  9. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928-1932 (2006). [CrossRef] [PubMed]
  10. U. Durig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59, 3318-3327 (1986). [CrossRef]
  11. J. C. Weeber, Y. Lacroute, and A. Dereux, “Optical near-field distributions of surface plasmon waveguide modes,” Phys. Rev. B 68, 115401 (2003). [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  13. C.-I. Lin and T. K. Gaylord, “Attenuation and mode profile determination of leaky/lossy modes in multilayer planar waveguides by a coupling simulation method,” Appl. Opt. 48, 3603-3613 (2009). [CrossRef] [PubMed]
  14. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  15. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314-16325 (2008). [CrossRef] [PubMed]
  16. R. Ulrich, “Theory of the prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. 60, 1337-1350 (1970). [CrossRef]
  17. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325-1337 (1970). [CrossRef]
  18. A. E. Craig, G. A. Olson, and D. Sarid, “Experimental-observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380-382 (1983). [CrossRef] [PubMed]
  19. J. C. Quail, J. G. Rako, and H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377-379 (1983). [CrossRef] [PubMed]
  20. F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-range surface-mode supported by very thin silver films,” Phys. Rev. Lett. 66, 2030-2032 (1991). [CrossRef] [PubMed]
  21. J. Q. Xia, A. K. Jordan, and J. A. Kong, “Inverse-scattering view of modal structures in inhomogeneous optical wave-guides,” J. Opt. Soc. Am. A 9, 740-748 (1992). [CrossRef]
  22. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol. 17, 929-941 (1999). [CrossRef]
  23. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968). [CrossRef]
  24. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric-constant,” Phys. Rev. B 44, 13556-13572 (1991). [CrossRef]
  25. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539-554 (1969). [CrossRef]
  26. E. Anemogiannis and E. N. Glytsis, “Multilayer wave-guides--efficient numerical-analysis of general structures,” J. Lightwave Technol. 10, 1344-1351 (1992). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited