OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 6 — Feb. 20, 2010
  • pp: 945–949

Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure

Ihor Sydoryk, Alan Lim, Wolfgang Jäger, John Tulip, and Matthew T. Parsons  »View Author Affiliations


Applied Optics, Vol. 49, Issue 6, pp. 945-949 (2010)
http://dx.doi.org/10.1364/AO.49.000945


View Full Text Article

Acrobat PDF (477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the application of a commercially available widely tunable continuous-wave external cavity quantum cascade laser as a spectroscopic source for the simultaneous detection of multiple gases. We measured broad absorption features of benzene and toluene between 1012 and 1063 cm−1 (9.88 and 9.41 μm) at atmospheric pressure using an astigmatic Herriott multipass cell. Our results show experimental detection limits of 0.26 and 0.41 ppm for benzene and toluene, respectively, with a 100 m path length for these two gases.

© 2010 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 2, 2009
Manuscript Accepted: December 26, 2009
Published: February 10, 2010

Citation
Ihor Sydoryk, Alan Lim, Wolfgang Jäger, John Tulip, and Matthew T. Parsons, "Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure," Appl. Opt. 49, 945-949 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-6-945


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553-556 (1994). [CrossRef]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533-1601 (2001). [CrossRef]
  3. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582-591 (2002). [CrossRef]
  4. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165-176 (2008). [CrossRef]
  5. A. A. Kosterev, F. K. Tittel, R. Kohler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169-1173 (2002). [CrossRef]
  6. Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, and C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180-5190 (2003). [CrossRef]
  7. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859-863(2001).
  8. A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408-413 (2009). [CrossRef]
  9. W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706-714 (2002). [CrossRef]
  10. D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Appl. Opt. 43, 3329-3334 (2004). [CrossRef]
  11. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J. Breath Res. 014001 (2007). [CrossRef]
  12. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W. Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C. H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834-2836 (2001). [CrossRef]
  13. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Muller, “Mid-infrared external-cavity quantum-cascade laser,” Opt. Lett. 27, 1788-1790 (2002). [CrossRef]
  14. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, H. Lee, W. Y. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486-494 (2002). [CrossRef]
  15. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006). [CrossRef]
  16. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84, 1659-1661 (2004). [CrossRef]
  17. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415, 883-887 (2002). [CrossRef]
  18. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Continuous-wave operation of a vertical transition quantum cascade laser above T=80 K,” Appl. Phys. Lett. 67, 3057-3059 (1995). [CrossRef]
  19. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301-305 (2002). [CrossRef]
  20. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop-free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305-311 (2008). [CrossRef]
  21. A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity quantum cascade laser,” Opt. Lett. 32, 2792-2794 (2007). [CrossRef]
  22. R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C. K. N. Patel, L. Diehl, C. Pflugl, and F. Capasso, “Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature,” Electron. Lett. 45, 107-108 (2009). [CrossRef]
  23. F. Murena, “Air quality nearby road traffic tunnel portals: BTEX monitoring,” J. Environ. Sci. (China) 19, 578-583 (2007). [CrossRef]
  24. “Interaction profile for: benzene, toluene, ethylbenzene, and xylenes (BTEX),” Agency for Toxic Substances and Disease Registry (2004).
  25. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006).
  26. J. D. Jeffers, C. B. Roller, K. Namjou, M. A. Evans, L. McSpadden, J. Grego, and P. J. McCann, “Real-time diode laser measurements of vapor-phase benzene,” Anal. Chem. 76, 424-432(2004). [CrossRef]
  27. J. Manne, W. Jager, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Appl. Phys. B 94, 337-344 (2009). [CrossRef]
  28. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452-1461 (2004). [CrossRef]
  29. J. Waschull, B. Sumpf, Y. Heiner, and H. D. Kronfeldt, “Diode laser spectroscopy in the ν14 band of benzene,” Infrared Phys. Technol. 37, 193-198 (1996). [CrossRef]
  30. J. Berger and V. V. Pustogov, “Monitoring of benzene in the 10 μm and 14 μm region,” Infrared Physics & Technology Infrared Phys. Technol. 37, 163-166 (1996). [CrossRef]
  31. W. D. Chen, F. Cazier, F. Tittel, and D. Boucher, “Measurements of benzene concentration by difference-frequency laser absorption spectroscopy,” Appl. Opt. 39, 6238-6242 (2000). [CrossRef]
  32. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Brooks/Cole: Thomson Learning, 1998).
  33. G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009). [CrossRef]
  34. J. Cousin, W. Chen, D. Bigourd, M. Fourmentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97919-929 (2009). [CrossRef]
  35. K. H. Kim, Z. H. Shon, M. Y. Kim, Y. Sunwoo, E. C. Jeon, and J. H. Hong, “Major aromatic VOC in the ambient air in the proximity of an urban landfill facility,” J. Hazard. Mater. 150, 754-764 (2008). [CrossRef]
  36. H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413-3424(2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited