## Debye series analysis of radiation pressure force exerted on a multilayered sphere

Applied Optics, Vol. 49, Issue 6, pp. 955-963 (2010)

http://dx.doi.org/10.1364/AO.49.000955

Enhanced HTML Acrobat PDF (390 KB)

### Abstract

On the basis of generalized Lorenz–Mie theory, the Debye series expansion (DSE) for radiation pressure forces (RPF) exerted on a multilayered sphere induced by focused beams is introduced. The DSE can isolate the contribution of each scattering process to RPF, and give a physical explanation of RPF. Typically, the RPF induced by a Gaussian beam is studied. The DSE is employed to the simulation of RPF corresponding to different scattering processes (diffraction, reflection, refraction, etc.) in detail, and gives the physical mechanism of RPF. The effects of various parameters, such as scattering mode *p*, beam position, and radius of core for coated spheres, to RPF is researched.

© 2010 Optical Society of America

**OCIS Codes**

(290.0290) Scattering : Scattering

(290.4020) Scattering : Mie theory

(290.5850) Scattering : Scattering, particles

(350.4855) Other areas of optics : Optical tweezers or optical manipulation

**ToC Category:**

Scattering

**History**

Original Manuscript: October 27, 2009

Revised Manuscript: January 17, 2010

Manuscript Accepted: January 18, 2010

Published: February 12, 2010

**Citation**

Renxian Li, Xiang'e Han, and Kuan Fang Ren, "Debye series analysis of radiation pressure force exerted on a multilayered sphere," Appl. Opt. **49**, 955-963 (2010)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-6-955

Sort: Year | Journal | Reset

### References

- A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
- A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283-285 (1971). [CrossRef]
- A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517-1520 (1987). [CrossRef] [PubMed]
- A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
- A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803-1814 (1981). [CrossRef] [PubMed]
- K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
- P. Domachuk, M. Cronin-Golomb, B. Eggleton, S. Mutzenich, G. Rosengarten, and A. Mitchell, “Application of optical trapping to beam manipulation in optofluidics,” Opt. Express 13, 7265-7275 (2005). [CrossRef] [PubMed]
- V. Bormuth, A. Jannasch, M. Ander, C. M. van Kats, A. van Blaaderen, J. Howard, and E. Schäffer, “Optical trapping of coated microspheres,” Opt. Express 16, 13831-13844 (2008). [CrossRef] [PubMed]
- J. Harris and G. McConnell, “Optical trapping and manipulation of live T cells with a low numerical aperture lens,” Opt. Express 16, 14036-14043 (2008). [CrossRef] [PubMed]
- D. C. Appleyard and M. J. Lang, “Optical trapping of cells and control of multiple particles through silicon,” Biophys. J. 93, 651a (2007).
- A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330, 769-771 (1987). [CrossRef] [PubMed]
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35, 2702-2710 (1996). [CrossRef] [PubMed]
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994). [CrossRef]
- G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: a theoretical and experimental study,” Phys. Lett. 59, 6-8 (1976). [CrossRef]
- G. Roosen, “A theoretical and experimental study of the stable equilibrium position of spheres levitated by two horizontal laser beams,” Opt. Commun. 21, 189-194 (1977). [CrossRef]
- A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992) [CrossRef] [PubMed]
- R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922-1930 (1992). [CrossRef]
- W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735-1748 (1994). [CrossRef] [PubMed]
- W. H. Wright, G. J. Sonek, and M. W. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715-717 (1993) [CrossRef]
- P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273-285 (1998). [CrossRef]
- K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930-932. [CrossRef] [PubMed]
- P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002). [CrossRef] [PubMed]
- G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443(1988). [CrossRef]
- G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998-1003 (1990). [CrossRef]
- G. Gouesbet and J. A. Lock, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516-2525 (1994). [CrossRef]
- G. Gréhan, B. Maheu, and G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539-3548 (1986). [CrossRef] [PubMed]
- J. A. Lock and G. Gouesbet, “A rigorous justification of the localized approximation to the beam shape coefficients in the generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503-2515 (1994). [CrossRef]
- B. Maheu, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory: first exact values and comparisons with the localized approximation,” Appl. Opt. 26, 23-25 (1987). [CrossRef] [PubMed]
- K. F. Ren, G. Gouesbet, and G. Gréhan, “The integral localized approximation in generalized Lorenz-Mie theory,” Appl. Opt. 37, 4218-4225 (1998). [CrossRef]
- J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532-2544(2004). [CrossRef] [PubMed]
- J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545-2554 (2004). [CrossRef] [PubMed]
- J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
- X. Yao, Z. Li, H. Guo, B. Cheng, X. Han, and D. Zhang, “Analysis and calculation of the optical force on a double-layer dielectric sphere,” Acta Opt. Sin. 20, 1305-1310 (2000).
- Y. Zhang, Y. Li, L. Zhao, H. Liu, J. Chen, G. Cui, J. Xu, and Q. Sun, “Transverse optical trapping force of absorbing double-layer spherical particles in a Gaussian beam,” Acta Phys. Sin. 58, 258-263 (2009).
- F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113-7124 (1995). [CrossRef] [PubMed]
- H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169-179 (1998). [CrossRef]
- P. Debije, “Das elektromagnetische feld um einen zylinder und die theorie des regenbogens,” Phys. Z. 9, 775-778 (1908).
- E. A. Hovenac and J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field scattering by use of the Debye series,” J. Opt. Soc. Am. A 9, 781-795 (1992). [CrossRef]
- J. A. Lock, J. M. Jamison, and C. Y. Lin, “Rainbow scattering by a coated sphere,” Appl. Opt. 33, 4677-4690 (1994). [CrossRef] [PubMed]
- R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series for light scattering by a multilayered sphere,” Appl. Opt. 45, 1260-1270 (2006). [CrossRef] [PubMed]
- R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255-6262 (2006). [CrossRef] [PubMed]
- J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316-1328 (1997). [CrossRef]
- R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009). [CrossRef]
- J. A. Lock, “Debye series analysis of scattering of a plane wave by a spherical Bragg grating,” Appl. Opt. 44, 5594-5603 (2005). [CrossRef] [PubMed]
- L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177-1179 (1979). [CrossRef]
- R. Li, X. Han, L. Shi, K. F. Ren, and H. Jiang, “Debye series for Gaussian beam scattering by a multilayered sphere,” Appl. Opt. 46, 4804-4812 (2007). [CrossRef] [PubMed]
- K. F. Ren, G. Gréhan, and G. Gouesbet, “Evaluation of laser sheet beam shape coefficients in generalized Lorenz-Mie theory by using a localized approximation,” J. Opt. Soc. Am. A 11, 2072-2079 (1994). [CrossRef]
- F. Xu, K. F. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.