OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 6 — Feb. 20, 2010
  • pp: 986–1000

Single-resolution and multiresolution extended-Kalman-filter-based reconstruction approaches to optical refraction tomography

Naren Naik, R. M. Vasu, and M. R. Ananthasayanam  »View Author Affiliations


Applied Optics, Vol. 49, Issue 6, pp. 986-1000 (2010)
http://dx.doi.org/10.1364/AO.49.000986


View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The problem of reconstruction of a refractive-index distribution (RID) in optical refraction tomography (ORT) with optical path-length difference (OPD) data is solved using two adaptive-estimation-based extended-Kalman-filter (EKF) approaches. First, a basic single-resolution EKF (SR-EKF) is applied to a state variable model describing the tomographic process, to estimate the RID of an optically transparent refracting object from noisy OPD data. The initialization of the biases and covariances corresponding to the state and measurement noise is discussed. The state and measurement noise biases and covariances are adaptively estimated. An EKF is then applied to the wavelet-transformed state variable model to yield a wavelet-based multiresolution EKF (MR-EKF) solution approach. To numerically validate the adaptive EKF approaches, we evaluate them with benchmark studies of standard stationary cases, where comparative results with commonly used efficient deterministic approaches can be obtained. Detailed reconstruction studies for the SR-EKF and two versions of the MR-EKF (with Haar and Daubechies-4 wavelets) compare well with those obtained from a typically used variant of the (deterministic) algebraic reconstruction technique, the average correction per projection method, thus establishing the capability of the EKF for ORT. To the best of our knowledge, the present work contains unique reconstruction studies encompassing the use of EKF for ORT in single-resolution and multiresolution formulations, and also in the use of adaptive estimation of the EKF’s noise covariances.

© 2010 Optical Society of America

OCIS Codes
(110.3175) Imaging systems : Interferometric imaging
(110.6955) Imaging systems : Tomographic imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: August 3, 2009
Manuscript Accepted: October 16, 2009
Published: February 17, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Naren Naik, R. M. Vasu, and M. R. Ananthasayanam, "Single-resolution and multiresolution extended-Kalman-filter-based reconstruction approaches to optical refraction tomography," Appl. Opt. 49, 986-1000 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-6-986


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Vest, “Tomography for properties of materials that bend rays: a tutorial,” Appl. Opt. 24, 4089-4094 (1985). [CrossRef]
  2. G. W. Faris and R. L. Byer, “Beam deflection optical tomography of a flame,” Opt. Lett. 12, 155-157 (1987). [CrossRef]
  3. G. W. Faris and R. L. Byer, “Three dimensional beam deflection optical tomography of a supersonic jet,” Appl. Opt. 27, 5202-5212 (1988). [CrossRef]
  4. Y. Song, B. Zhang, and A. He, “Algebraic iterative algorithm for deflection tomography and its application to density flow fields in a hypersonic wind tunnel,” Appl. Opt. 45, 8092-8101 (2006). [CrossRef]
  5. I. H. Lira, “Correcting for refraction effects in holographic interferometry and tomography of transparent objects,” Ph.D. dissertation (University of Michigan, 1987).
  6. S. Bahl and J. A. Liburdy, “Three-dimensional image reconstruction using interferometric data from a limited field of view with noise,” Appl. Opt. 30, 4218-4226 (1991). [CrossRef]
  7. B. H. Timmerman, D. W. Watt, and P. J. Bryanston-Cross, “Quantitative visualization of high speed 3D turbulent flow structures using holographic interferometric tomography,” Opt. Laser Technol. 31, 53-65 (1999). [CrossRef]
  8. N. Naik, “Studies on the development of models and reconstruction algorithms for optical tomography,” Ph.D. dissertation (Department of Instrumentation, Indian Institute of Science, 2000).
  9. G. Keshava Datta and R. M. Vasu, “Non-interferometric methods of phase estimation for application in optical tomography,” J. Mod. Opt. 46, 1377-1388 (1999).
  10. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase microscopy,” Opt. Commun. 175, 329-336 (2000). [CrossRef]
  11. H. Thayyullathil, R. Langoju, R. Padmaram, R. M. Vasu, R. Kanjirodan, and L. M. Patnaik, “Three-dimensional optical tomographic imaging of supersonic jets through inversion of phase data obtained through the transport of intensity equation,” Appl. Opt. 43, 4133-4141 (2004). [CrossRef]
  12. R. E. Pierson, D. F. Olson, E. Y. Chen, and L. McMackin, “Comparison of reconstruction algorithm performance for optical phase tomography of a heated air flow,” Opt. Eng. 39, 838-846 (2000). [CrossRef]
  13. H. Thayyullathil, R. M. Vasu, and R. Kanjirodan, “Quantitative flow visualization in supersonic jets through tomographic inversion of wavefronts estimated through shadow casting,” Appl. Opt. 45, 5010-5019 (2006). [CrossRef]
  14. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrason. Imaging 6, 81-94 (1984). [CrossRef]
  15. F. Denis, O. Basset, and G. Gimenez, “Ultrasonic transmission tomography in refracting media: reduction of refraction artifacts by curved ray techniques,” IEEE Trans. Med. Imaging 14, 173-188 (1995). [CrossRef]
  16. R. J. Lytle and K. A. Dines, “Iterative ray tracing between boreholes for underground image reconstructions,” IEEE Trans. Geosci. Remote Sens. 18, 234-240 (1980). [CrossRef]
  17. J. G. Berryman, “Fermat's principle and nonlinear traveltime tomography,” Phys. Rev. Lett. 62, 2953-2956 (1989). [CrossRef]
  18. S.-Y. Lu and J. G. Berryman, “Inverse scattering, seismic traveltime tomography, and neural networks,” J. Imag. Sci. Technol. 2, 112-118 (1990). [CrossRef]
  19. I. H. Lira and C. M. Vest, “Refraction correction in holographic interferometry and tomography of transparent objects,” Appl. Opt. 26, 3919-3928(1987). [CrossRef]
  20. S. Cha and C. M. Vest, “Tomographic reconstruction of strongly refracting fields and its application to interferometric measurement of boundary layers,” Appl. Opt. 20, 2787-2794 (1981). [CrossRef]
  21. S. J. Norton and J. M. Linzer, “Correcting for ray refraction in velocity and attenuation tomography: a perturbation approach,” Ultrason. Imaging 4, 201-233 (1982). [CrossRef]
  22. R. Snyder and L. Hesselink, “High speed optical tomography for flow visualization,” Appl. Opt. 24, 4046-4051 (1985). [CrossRef]
  23. M. J. Eppstein and D. E. Dougherty, “Optimal 3-D traveltime tomography,” Geophysics 63, 1053-1061 (1998). [CrossRef]
  24. M. J. Eppstein, D. E. Dougherty, T. L. Troy, and E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parametrization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138-2150 (1999). [CrossRef]
  25. N. Naik and R. M. Vasu, “An extended Kalman filter based reconstruction approach to curved ray optical tomography,” Proc. SPIE 3729, 153-157 (1999). [CrossRef]
  26. N. Naik and R. M. Vasu, “A wavelet based multiresolution extended Kalman filter approach to the reconstruction problem of curved ray optical tomography,” Proc. SPIE 3642, 156-165 (1999). [CrossRef]
  27. V. Kolehmainen, S. Prince, S. R. Arridge, and J. P. Kaipio, “State estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876-889 (2003). [CrossRef]
  28. A.-P. Tossavainen, M. Vauhkonen, and V. Kolehmainen, “A three-dimensional shape estimation approach for tracking of phase interfaces in sedimentation processes using electrical impedance tomography,” Meas. Sci. Technol. 18, 1413-1424(2007). [CrossRef]
  29. Seppanen, M. Vaukhonen, E. Somersalo, and J. P. Kaipio, “State space models in process tomography-approximation of state noise covariance,” Inv. Prob. Eng. 9, 561-585 (2001).
  30. B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements,” Phys. Med. Biol. 54, 285-305 (2009). [CrossRef]
  31. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, 1992).
  32. T. M. Chin and A. J. Mariano, “Wavelet based compression of covariances in Kalman filtering of geophysical flows,” Proc. SPIE 2242, 842-850 (1994). [CrossRef]
  33. T. M. Chin and A. J. Mariano, “Kalman filtering of large scale geophysical flows by approximations based on Markov random fields and wavelets,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 1995), Vol. 5, pp. 2785-2788.
  34. G. Beylkin, R. R. Coifman, and V. Rokhlin, “Fast wavelet transforms and numerical algorithms,” Commun. Pure Appl. Math. 44, 141-183 (1991). [CrossRef]
  35. A. H. Andersen, “Ray linking for computed tomography by rebinning of projection data,” J. Acoust. Soc. Am. 81, 1190-1192 (1987). [CrossRef]
  36. A. H. Jazwinski, Stochastic Processes and Filtering Theory (Academic, 1970).
  37. A. K. Sarkar, New perspectives in state and parameter estimation of flight vehicles for off-line and real time applications, Ph.D. dissertation (Department of Aerospace Engineering, Indian Institute of Science, 2004).
  38. P. Maybeck, Stochastic Models, Estimation and Control (Academic, 1982).
  39. K. A. Myers and B. D. Tapley, “Adaptive sequential estimation with unknown noise statistics,” IEEE Trans. Automat. Contr. 21, 520-523 (1976). [CrossRef]
  40. A. H. Andersen and A. C. Kak, “Digital ray tracing in two dimensional refractive fields,” J. Acoust. Soc. Am. 72, 1593-1606 (1982). [CrossRef]
  41. J. M. Mendel, Lessons in Digital Estimation Theory (Prentice Hall, 1987).
  42. R. L. Kirlin and A. Moghaddamjoo, “Robust adaptive Kalman filtering for systems with unknown step inputs and non-Gaussian measurement errors,” IEEE Trans. Acoust. Speech Signal Process. 34, 252-263 (1986). [CrossRef]
  43. L. Blanc-Feraud, P. Charbonnier, P. Lobel, and M. Barlaud, “A fast tomographic reconstruction algorithm in the 2D-wavelet transform domain,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 1994), Vol. 5, pp. 305-308.
  44. I. Daubechies, M. Defrise, and C. de Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Commun. Pure Appl. Math. 57, 1413-1457(2004). [CrossRef]
  45. E. L. Miller, L. Nicolaides, and A. Mandelis, “Nonlinear inverse scattering methods for thermal wave slice tomography: a wavelet domain approach,” J. Opt. Soc. Am. A 15, 1545-1556 (1998). [CrossRef]
  46. W. Zhu, Y. Deng, Y. Yao, and R. L. Barbour, “A wavelet based multiresolution regularised least squares reconstruction approach to optical tomography,” IEEE Trans. Med. Imaging 16, 210-217 (1997). [CrossRef]
  47. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlund, “Deterministic edge preserving regularization in computed imaging,” IEEE Trans. Image Process. 6, 298-311 (1997). [CrossRef]
  48. D. D. Verhoeven, “MART type CT algorithms for the reconstruction of multidirectional interferometric data,” Proc. SPIE 1553, 376-387 (1992). [CrossRef]
  49. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).
  50. G. J. Bierman, Factorization Methods for Discrete Sequential Estimation (Academic, 1977).
  51. T. H. Koornwinder, Wavelets: An Elementary Treatment of Theory and Applications (World Scientific, 1993).
  52. B. Lin, B. Nguyen, and E. T. Olsen, “Orthogonal wavelets and signal processing,” Signal Processing Methods for Audio, Images and Telecommunication, P. M. Clarkson and H. Stark, eds. (Academic, 1995) pp. 1-69.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited