OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: 1069–1074

Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display

Cheng-Shan Guo, Shu-Juan Yue, Xi-Lin Wang, Jianping Ding, and Hui-Tian Wang  »View Author Affiliations


Applied Optics, Vol. 49, Issue 7, pp. 1069-1074 (2010)
http://dx.doi.org/10.1364/AO.49.001069


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method for realizing a polarization-selective diffractive optical element by using of a single twisted-nematic liquid-crystal display (TN-LCD). We have demonstrated that two orthogonal polarization-encoding channels can be formed using a single TN-LCD operated in some special conditions. Based on the two orthogonal encoding channels, two orthogonal polarized components of a field with any complex amplitude can be holographically encoded and reconstructed and, hence, different output images with different polarization states could be obtained, or a vector beam with spatially inhomogeneous polarization distributions, as well as the desired complex amplitude distributions, could be combined.

© 2010 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.2890) Holography : Holographic optical elements
(230.5440) Optical devices : Polarization-selective devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

History
Original Manuscript: December 11, 2009
Manuscript Accepted: January 22, 2010
Published: February 22, 2010

Citation
Cheng-Shan Guo, Shu-Juan Yue, Xi-Lin Wang, Jianping Ding, and Hui-Tian Wang, "Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display," Appl. Opt. 49, 1069-1074 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-7-1069


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592-599(1998). [CrossRef]
  2. P. C. Mogensen and J. Gluckstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177-183 (2000). [CrossRef]
  3. F. Gori, “Measuring Stokes parameters by means of polarization grating,” Opt. Lett. 24, 584-586 (1999). [CrossRef]
  4. F. Xu, J. E. Ford, and Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256-266 (1995) [CrossRef]
  5. A. V. Krishnamoorthy, F. Xu, J. E. Ford, and Y. Fainman, “Polarization-controlled multistage switch based on polarization-selective computer-generated holograms,” Appl. Opt. 36, 997-1010 (1997). [CrossRef]
  6. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285-287(2002). [CrossRef]
  7. K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006). [CrossRef]
  8. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549-3551 (2007). [CrossRef]
  9. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization inYb:YAG thin-disk lasers,” Opt. Lett. 32, 3272-3274 (2007). [CrossRef]
  10. B. C. Lim, P. B. Phua, W. J. Lai, and M. H. Hong, “Fast switchable electro-optic radial polarization retarder,” Opt. Lett. 33, 950-952 (2008). [CrossRef]
  11. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radiallyand azimuthally-polarized beams,” Opt. Commun. 281, 732-738 (2008). [CrossRef]
  12. Qiwen Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009). [CrossRef]
  13. J. Ford, F. Xu, K. Urquhart, and Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 18, 456-458 (1993). [CrossRef]
  14. N. Nieuborg, A. Kirk, B. Morlion, H. Thienpont, and I. Veretennicoff, “Polarization-selective diffractive optical elements with an index-matching gap material,” Appl. Opt. 36, 4681-4685 (1997). [CrossRef]
  15. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Form-birefringent computergenerated holograms,” Opt. Lett. 21, 1513-1515 (1996). [CrossRef]
  16. U. Zeitner, B. Schnabel, E. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38, 2177-2181 (1999). [CrossRef]
  17. Z. Bomzon, V. Kleiner, and E. Hasman, “Computer-generated space-variant polarization elements with subwavelength metal stripes,” Opt. Lett. 26, 33-35 (2001). [CrossRef]
  18. W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, “Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures,” Appl. Opt. 41, 96-100 (2002). [CrossRef]
  19. S. H. Tao, X.-C. Yuan, W. C. Cheong, J. Bu, and V. Kudryashov, “Optimized polarization-selective computer-generated hologram with fewer phase combinations,” Opt. Express 11, 1252-1257 (2003).
  20. M. Mirotznik, D. Pustai, D. Prather, and J. Mait, “Design of two-dimensional polarization-selective diffractive optical elements with form-birefringent microstructures,” Appl. Opt. 43, 5947-5954 (2004). [CrossRef]
  21. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785-3791 (2006). [CrossRef]
  22. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549-1554 (2000). [CrossRef]
  23. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587-589 (2001). [CrossRef]
  24. C. R. Fernandez-Pousa, I. Moreno, J. A. Davis, and J. Adachi, “Polarizing diffraction-grating triplicators,” Opt. Lett. 26, 1651-1653 (2001). [CrossRef]
  25. Jeffrey A. Davis, Garrett H. Evans, and Ignacio Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44, 4049-4052 (2005). [CrossRef]
  26. I. Moreno, J. L. Martínez, and J. A. Davis, “Two-dimensional polarization rotator using a twisted-nematic liquid-crystal display,” Appl. Opt. 46, 881-887 (2007). [CrossRef]
  27. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937-945 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited