OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: 1131–1138

Monitoring intermediate states of bacteriorhodopsin monolayers using near-field optical microscopy

Narasimhan Arun, Sabyasachi Mukhopadhyay, and K. S. Narayan  »View Author Affiliations

Applied Optics, Vol. 49, Issue 7, pp. 1131-1138 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate single-molecule-level features using near-field optical microscopy on bacteriorhodopsin (bR), a membrane protein that functions as a light-driven proton pump. The photophysical properties of bR are utilized in this imaging technique, using a combination of photoexcitation sources, to accurately identify the active regions and quantify the optical parameters. The studies of bR monolayers are carried out on inert quartz substrates as well as active conducting polymer (polyaniline) substrates. The substrate also plays an important role in the photocycle quantum efficiencies. We speculate on mechanisms governing the higher near-field absorption strength of bR molecules.

© 2010 Optical Society of America

OCIS Codes
(160.1435) Materials : Biomaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: October 22, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 18, 2010
Published: February 24, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Narasimhan Arun, Sabyasachi Mukhopadhyay, and K. S. Narayan, "Monitoring intermediate states of bacteriorhodopsin monolayers using near-field optical microscopy," Appl. Opt. 49, 1131-1138 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Weiss, “Flourescence spectroscopy of single biomolecules,” Science 283, 1676-1683 (1999). [CrossRef] [PubMed]
  2. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670-1676 (1999). [CrossRef] [PubMed]
  3. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  4. A. Janshoff, M. Neitzert, Y. Oberdorfer, and H. Fuchs, “Force spectroscopy of molecular systems--single molecule spectroscopy of polymers and biomolecules,” Angew. Chem. Int. Ed. 39, 3213-3237 (2000). [CrossRef]
  5. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422-1425 (1993). [CrossRef] [PubMed]
  6. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2921 (1999). [CrossRef]
  7. W. Stoeckenius, “Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps,” Protein Sci. 8, 447-459 (1999). [CrossRef] [PubMed]
  8. J. K. Lanyi, “Bacteriorhodopsin,” Annu. Rev. Physiol. 66, 665-688 (2004). [CrossRef] [PubMed]
  9. R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990). [CrossRef] [PubMed]
  10. N. B. Gillespie, K. J. Wise, L. Ren, J. A. Stuart, D. L. Marcy, J. Hillebrecht, Q. Li, L. Ramos, K. Jordan, S. Fyvie, and R. R. Birge, “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B 106, 13352-13361 (2002). [CrossRef]
  11. H. W. Trissl, “Photoelectric measurements of purple membranes,” Photochem. Photobiol. 51, 793-818 (1990). [PubMed]
  12. L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, “Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin,” FEBS Lett. 178, 331-335 (1984). [CrossRef]
  13. T. Dyukova, B. Robertson, and H. Weetall, “Optical and electrical characterization of bacteriorhodopsin films,” BioSystems 41, 91-98 (1997). [CrossRef] [PubMed]
  14. F. T. Hong, “Interfacial photochemistry of retinal proteins,” Prog. Surf. Sci. 62, 1-237 (1999). [CrossRef]
  15. M. Li, B. Li, L. Jiang, T. Tussila, N. Tkachenko, and H. Lemmetyinen, “Long-lived M-state in multilayer films fabricated by alternative deposition of a polycation and bacteriorhodopsin,” Langmuir 16, 5503-5505 (2000). [CrossRef]
  16. L. Zhang, T. Zeng, K. Cooper, and R. O. Claus, “High-performance photovotaic behavior of oriented purple membrane polymer composite films,” Biophys. J. 84, 2502-2507 (2003). [CrossRef] [PubMed]
  17. C. E. Schmidt, V. R. Shastri, J. P. Vacanti, and R. Langer, “Stimulation of neurite outgrowth using an electrically conducting polymer,” Proc. Natl. Acad. Sci. 94, 8948-8953(1997). [CrossRef] [PubMed]
  18. M. R. Abidian, D-H. Kim, and D. C. Martin, “Conducting-polymer nanotubes for controlled drug release,” Adv. Mater. 18, 405-409 (2006). [CrossRef] [PubMed]
  19. B. S. Gaylord, A. J. Heeger, and G. C. Bazan, “DNA hybridization detection with water-soluble conjugated polymers and chromophore-labelled single-stranded DNA,” J. Am. Chem. Soc. 125, 896-900 (2003). [CrossRef] [PubMed]
  20. J. He, L. Samuelson, L. Li, J. Kumar, and S. K. Tripathy, “Bacteriorhodopsin thin film assemblies-immobilization, properties and applications,” Adv. Mater. 11, 435-445(1999). [CrossRef]
  21. T. He, N. Friedman, D. Cahen, and M. Sheves, “Bacteriorhodopsin monolayers for optoelectronics: orientation and photoelectric response on solid supports,” Adv. Mater. 17, 1023-1027(2005). [CrossRef]
  22. J. H. Cheung, W. B. Stockton, and M. F. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules 30, 2712-2716 (1997). [CrossRef]
  23. I. Horcas, R. Fernández, J. M. Gomez-Rodríguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSxM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007). [CrossRef] [PubMed]
  24. D. J. Muller, H-J. Sass, S. A. Muller, G. Buldt, and A. Engel, “Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane,” J. Mol. Biol. 285, 1903-1909 (1999). [CrossRef] [PubMed]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  26. H. Kuzmany, Solid-State Spectroscopy: an Introduction (Springer-Verlag, 1998).
  27. H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. K. Lanyi, “Structure of bacteriorhodopsin at 1.55 Å resolution,” J. Mol. Biol. 291, 899-911 (1999). [CrossRef] [PubMed]
  28. A. S. Ulrich, A. Watts, I. Wallat, and M. P. Heyn, “Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR,” Biochemistry 33, 5370 (1994). [CrossRef] [PubMed]
  29. S. W. Lin and R. A. Mathies, “Orientation of the protonated retinal Schiff base group in bacteriorhodopsin from absorption linear dichroism,” Biophys. J. 56, 653-660 (1989). [CrossRef] [PubMed]
  30. J. A. Veerman, M. F. Garcia-Parajo, L. Kuiper, and N. F. Van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194, 477-482 (1999). [CrossRef]
  31. D. Courjon and C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989-1028 (1994). [CrossRef]
  32. A. Seitz and N. Hampp, “Kinetic Optimization of Bacteriorhodopsin Films for Holographic Interferometry,” J. Phys. Chem. B 104, 7183-7192 (2000). [CrossRef]
  33. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755-1776(2000). [CrossRef]
  34. L. Zimanyi, “Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: a critical evaluation using realistic simulated data,” J. Phys. Chem. B 108, 4199-4209 (2004). [CrossRef]
  35. K. Ohno, R. Govindjee, and T. G. Ebrey, “Blue light effect on the proton pumping by bacteriorhodopsin,” Biophys. J. 43, 251-254 (1983). [CrossRef] [PubMed]
  36. R. Govindjee, S. P. Balashov, and T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin,” Biophys. J. 58, 597-608 (1990). [CrossRef] [PubMed]
  37. A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W.-S. Huang, and A. G. MacDiarmid, “Insulator-to-metal transition in polyaniline,” Synth. Met. 18, 303-309 (1987). [CrossRef]
  38. N. Arun and K. S. Narayan, “Conducting polymers as antennas for probing biophysical activities,” J. Phys. Chem. B 112, 1564-1569 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited