OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: 1151–1157

Photon-trap spectroscopy applied to molecules adsorbed on a solid surface: probing with a standing wave versus a propagating wave

Kazuhiro Egashira, Akira Terasaki, and Tamotsu Kondow  »View Author Affiliations

Applied Optics, Vol. 49, Issue 7, pp. 1151-1157 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We apply photon-trap spectroscopy, a generalized scheme of cavity ringdown spectroscopy, to infrared spectroscopy of molecular adsorbates on a solid substrate. The storage lifetime of light in a high-finesse Fabry–Perot cavity provides a high absorbance sensitivity for the substrate sample, which is placed exactly normal to the light beam in the cavity to minimize optical losses. Infrared spectra of the C–H stretching vibration of alkylsiloxane monolayer films on a silicon substrate are measured in three ways, namely by employing pulsed and continuous-wave lasers as well as by conventional Fourier transform infrared spectroscopy. The magnitude of optical absorption is shown to vary by the character of the interacting light used in the measurement, i.e., a standing wave versus a propagating wave.

© 2010 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:

Original Manuscript: October 5, 2009
Revised Manuscript: January 21, 2010
Manuscript Accepted: January 22, 2010
Published: February 25, 2010

Kazuhiro Egashira, Akira Terasaki, and Tamotsu Kondow, "Photon-trap spectroscopy applied to molecules adsorbed on a solid surface: probing with a standing wave versus a propagating wave," Appl. Opt. 49, 1151-1157 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Kastler, “Atomes à l'intérieur d'un interféromètre Perot-Fabry,” Appl. Opt. 1, 17-24 (1962). [CrossRef]
  2. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  3. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25-51 (1997). [CrossRef] [PubMed]
  4. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  5. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005). [CrossRef]
  6. L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry,” Annu. Rev. Anal. Chem. 2, 13-35 (2009). [CrossRef]
  7. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978-2989 (1997). [CrossRef]
  8. A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093-3096(1999). [CrossRef]
  9. A. C. R. Pipino, “Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy,” Appl. Opt. 39, 1449-1453(2000). [CrossRef]
  10. A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, “Evanescent wave cavity ring-down spectroscopy for probing surface processes,” Chem. Phys. Lett. 280, 104-112 (1997). [CrossRef]
  11. A. M. Shaw, T. E. Hannon, F. Li, and R. N. Zare, “Adsorption of crystal violet to the silica-water interface monitored by evanescent wave cavity ring-down spectroscopy,” J. Phys. Chem. B 107, 7070-7075 (2003). [CrossRef]
  12. M. A. Everest, V. M. Black, A. S. Haehlen, G. A. Haveman, C. J. Kliewer, and H. A. Neill, “Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 110, 19461-19468 (2006). [CrossRef] [PubMed]
  13. F. Li and R. N. Zare, “Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy,” J. Phys. Chem. B 109, 3330-3333 (2005). [CrossRef]
  14. R. D. van Zee, J. P. Looney, and J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” Proc. SPIE 3535, 46-56 (1999). [CrossRef]
  15. J. M. Herbelin and J. A. McKay, “Development of laser mirrors of very high reflectivity using the cavity-attenuated phase-shift method,” Appl. Opt. 20, 3341-3344 (1981). [CrossRef] [PubMed]
  16. G. A. Marcus and H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167-5171 (2002). [CrossRef] [PubMed]
  17. R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003). [CrossRef]
  18. J.-M. Antonietti, M. Michalski, U. Heiz, H. Jones, K. H. Lim, N. Rösch, A. Del Vitto, and G. Pacchioni, “Optical absorption spectrum of gold atoms deposited on SiO2 from cavity ringdown spectroscopy,” Phys. Rev. Lett. 94, 213402 (2005). [CrossRef] [PubMed]
  19. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458-4467 (1997). [CrossRef]
  20. R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999). [CrossRef]
  21. S. L. Logunov, “Cavity ringdown detection of losses in thin films in the telecommunication wavelength window,” Appl. Opt. 40, 1570-1573 (2001). [CrossRef]
  22. I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels, and M. C. M. van de Sanden, “Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy,” Appl. Phys. Lett. 84, 3079-3081 (2004). [CrossRef]
  23. H. Mertens, A. Polman, I. M. P. Aarts, W. M. M. Kessels, and M. C. M. van de Sanden, “Absence of the enhanced intra-4f transition cross section at 1.5 μm of Er3+ in Si-rich SiO2,” Appl. Phys. Lett. 86, 241109 (2005). [CrossRef]
  24. J. Hoang, T. T. Van, M. Sawkar-Mathur, B. Hoex, M. C. M. Van de Sanden, W. M. M. Kessels, R. Ostroumov, K. L. Wang, J. R. Bargar, and J. P. Chang, “Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition,” J. Appl. Phys. 101, 123116 (2007). [CrossRef]
  25. A. Terasaki, T. Kondow, and K. Egashira, “Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate,” J. Opt. Soc. Am. B 22, 675-686 (2005). [CrossRef]
  26. K. Egashira, A. Terasaki, and T. Kondow, “Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy,” J. Chem. Phys. 126, 221102(2007). [CrossRef] [PubMed]
  27. R. Maoz and J. Sagiv, “On the formation and structure of self-assembling monolayers I. a comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads,” J. Colloid Interface Sci. 100, 465-496 (1984). [CrossRef]
  28. J. B. Brzoska, N. Shahidzadeh, and F. Rondelez, “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings,” Nature 360, 719-721(1992). [CrossRef]
  29. S. R. Wasserman, Y.-T. Tao, and G. M. Whitesides, “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates,” Langmuir 5, 1074-1087 (1989). [CrossRef]
  30. P. Silberzan, L. Léger, D. Ausserré, and J. J. Benattar, “Silanation of silica surfaces. A new method of constructing pure or mixed monolayers,” Langmuir 7, 1647-1651(1991). [CrossRef]
  31. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293-1295(1997). [CrossRef]
  32. R. A. MacPhail, H. L. Strauss, R. G. Snyder, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 2. long, all-trans chains,” J. Phys. Chem. 88, 334-341(1984). [CrossRef]
  33. A. N. Parikh, D. L. Allara, I. B. Azouz, and F. Rondelez, “An intrinsic relationship between molecular structure in self-assembled n-alkylsiloxane monolayers and deposition temperature,” J. Phys. Chem. 98, 7577-7590 (1994). [CrossRef]
  34. R. G. Snyder, H. L. Strauss, and C. A. Elliger, “C-H stretching modes and the structure of n-alkyl chains. 1. long, disordered chains,” J. Phys. Chem. 86, 5145-5150 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited