OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: A1–A10

Analysis of the self-imaging effect in plasmonic multimode waveguides

André G. Edelmann, Stefan F. Helfert, and Jürgen Jahns  »View Author Affiliations


Applied Optics, Vol. 49, Issue 7, pp. A1-A10 (2010)
http://dx.doi.org/10.1364/AO.49.0000A1


View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present studies on the propagation of plasmon waves in metallic multimode waveguides surrounded by a dielectric medium. The permittivity of the metal was determined by a Drude model. The propagation was simulated by the method of lines. The propagating field exhibited the well-known self-imaging phenomenon known as the Talbot effect. The metallic waveguides are lossy. The influence of various parameters on the losses was examined. By a suitable choice of parameters, propagation distances of several Talbot periods are possible. Our investigation also includes simulations for the propagation of eigenmodes of the waveguides and results for the calculation of the effective index.

© 2010 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

History
Original Manuscript: July 16, 2009
Revised Manuscript: September 28, 2009
Manuscript Accepted: October 2, 2009
Published: October 29, 2009

Citation
André G. Edelmann, Stefan F. Helfert, and Jürgen Jahns, "Analysis of the self-imaging effect in plasmonic multimode waveguides," Appl. Opt. 49, A1-A10 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-7-A1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, 1988).
  2. J. Ctyroky, J. Homola, P. Lambeck, S. Musa, H. Hoekstra, R. Harris, J. Wilkinson, B. Usievich, and N. Lyndin, “Theory and modelling of optical waveguide sensors utilising 20 surface plasmon resonance,” Sens. Actuators B 54, 66-73(1999). [CrossRef]
  3. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B 29, 261-267(1995).
  4. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano. Lett. 5, 1726-1729 (2005).
  5. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88, 171108 (2006). [CrossRef]
  6. M. R. Dennis, N. I. Zheludev, and F. J. G. de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692-9700 (2007). [CrossRef]
  7. R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh, ed. (Wiley, 1989), pp. 381-446.
  8. R. Pregla, Analysis of Electromagnetic Fields and Waves: the Method of Lines (Wiley, 2008).
  9. O. Conradi, S. Helfert, and R. Pregla, “Comprehensive modeling of vertical-cavity laser-diodes by the method of lines,” IEEE J. Quantum Electron. 37, 928-935 (2001). [CrossRef]
  10. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627(1995). [CrossRef]
  11. H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401-407 (1836).
  12. A. W. Lohmann and D. A. Silva, “An interferometer based on the talbot effect,” Opt. Commun. 2, 413-415 (1971). [CrossRef]
  13. J. Jahns, E. ElJoudi, D. Hagedorn, and S. Kinne, “Talbot interferometer as a time filter,” Optik (Jena) 112, 295-298 (2001). [CrossRef]
  14. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63, 416-419 (1973). [CrossRef]
  15. R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339(1975). [CrossRef]
  16. S. F. Helfert, B. Huneke, and J. Jahns, “Self-imaging effect in multimode waveguides with longitudinal periodicity,” J. Eur. Opt. Soc. 4, 09031 (2009). [CrossRef]
  17. S. F. Helfert and R. Pregla, “The method of lines: a versatile tool for the analysis of waveguide structures,” Electromagnetics 22, 615-637 (2002), [CrossRef]
  18. R. Pregla and S. F. Helfert, “Modeling of microwave devices with the method of lines,” in Recent Research Developments in Microwave Theory and Techniques, B. Beker and Y. Chen, eds. (Research Signpost, 2002), pp. 145-196.
  19. H. J. W. M. Hoekstra, P. V. Lambeck, G. J. M. Krijnen, J. Čtyroký, M. D. Minicis, C. Sibilia, O. Conradi, S. Helfert, and R. Pregla, “A cost 240 benchmark test for beam propagation methods applied to an electrooptical modulator based on surface plasmons,” J. Lightwave Technol. 16, 1921-1927(1998). [CrossRef]
  20. M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, , B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
  21. O. Conradi, S. Helfert, and R. Pregla, “Modification of the finite difference scheme for efficient analysis of thin lossy metal layers in optical devices,” Opt. Quantum Electron. 30, 369-373 (1998). [CrossRef]
  22. J. Gerdes, “Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines,” Electron. Lett. 30, 550-551 (1994). [CrossRef]
  23. S. F. Helfert, A. Barcz, and R. Pregla, “Three-dimensional vectorial analysis of waveguide structures with the method of lines,” Opt. Quantum Electron. 35, 381-394 (2003). [CrossRef]
  24. R. Pregla, “Novel FD-BPM for optical waveguide structures with isotropic or anisotropic material,” in Proceedings of the European Conference on Integrated Optics and Technical Exhibit (European Optical Society, 1999), pp. 55-58.
  25. R. Pregla, “MoL-BPM method of lines based beam propagation method,” in Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices (PIER 11), W. P. Huang, ed. (EMW Publishing, 1995), pp. 51-102.
  26. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
  27. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited