OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: A11–A17

Visible frequency magnetic activity in silver nanocluster metamaterial

Venkata Ananth Tamma, Jin-Hyoung Lee, Qi Wu, and Wounjhang Park  »View Author Affiliations

Applied Optics, Vol. 49, Issue 7, pp. A11-A17 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (693 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally observe magnetic resonance in the visible frequency region from self-assembled silver nanocluster metamaterials. Extensive numerical modeling studies were conducted to find the optimal nanocluster dimensions. Self-assembly of silver nanoparticles coated with nanoscale silica coating was then performed on polymer templates fabricated by laser interference lithography. The nanoclusters supported magnetic resonance in the visible region, and the extracted effective permeability exhibited Lorentz-like resonance. The experimentally observed lowest value for the real part of permeability was 0.06. The nanocluster metamaterial represents a practical metamaterial architecture that is compatible with the scalable bottom-up manufacturing process.

© 2010 Optical Society of America

OCIS Codes
(350.4990) Other areas of optics : Particles
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

Original Manuscript: August 3, 2009
Revised Manuscript: September 30, 2009
Manuscript Accepted: October 2, 2009
Published: October 29, 2009

Venkata Ananth Tamma, Jin-Hyoung Lee, Qi Wu, and Wounjhang Park, "Visible frequency magnetic activity in silver nanocluster metamaterial," Appl. Opt. 49, A11-A17 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for review, W. Park and J. Kim, “Negative index materials,” MRS Bull. 33, 907-911 (2008).
  2. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315-316(2004). [CrossRef]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  5. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568-571(2009). [CrossRef]
  7. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922-12928 (2009). [CrossRef] [PubMed]
  8. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Cloaking at optical frequencies,” Nat. Photon. 3, 461-463(2009). [CrossRef]
  9. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404(2005). [CrossRef] [PubMed]
  11. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  12. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376-379(2008). [CrossRef] [PubMed]
  13. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356-3358(2005). [CrossRef]
  14. S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14, 4035-4045 (2002). [CrossRef]
  15. W. Park and Q. Wu, “Negative effective permeability in metal cluster photonic crystal,” Solid State Commun. 146, 221-227(2008). [CrossRef]
  16. W. Park and Q. Wu, “Optical frequency magnetic activity in metal nanocluster photonic crystal,” J. Comput. Theor. Nanosci. 5, 476-482 (2008).
  17. Q. Wu and W. Park, “Negative index materials based on metal nanoclusters,” Appl. Phys. Lett. 92, 153114 (2008). [CrossRef]
  18. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, “Design of an artificial three-dimensional composite metamaterial with magnetic resonances in the visible range of the electromagnetic spectrum,” Phys. Rev. Lett. 99, 017401(2007). [CrossRef] [PubMed]
  19. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34, 443-445 (2009). [CrossRef] [PubMed]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  21. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189-196 (2000). [CrossRef]
  22. V. Yannopapas and A. Modinos, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359-5365(1999). [CrossRef]
  23. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  24. D. Kim, S. Jeong, and J. Moon, “Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection,” Nanotechnology 17, 4019-4024 (2006). [CrossRef] [PubMed]
  25. W. Stöber and A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62-69 (1968). [CrossRef]
  26. C. Graf, D. L. J. Vossen, A. Imhof, and A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19, 6693-6700 (2003). [CrossRef]
  27. H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076-1083(2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited