OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: A23–A29

Analysis of the coupling of light into a metal–dielectric composite waveguide structure and its application for use as a wavelength-band selection filter

Yongjun Lim, Seyoon Kim, Junghyun Park, Hwi Kim, and Byoungho Lee  »View Author Affiliations


Applied Optics, Vol. 49, Issue 7, pp. A23-A29 (2010)
http://dx.doi.org/10.1364/AO.49.000A23


View Full Text Article

Enhanced HTML    Acrobat PDF (817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyzed and experimentally tested a metal–dielectric composite waveguide structure. After coating the surface of the metal layer in the Kretschmann attenuated total internal reflection configuration with a dielectric layer, we explain the coupling of incident light into the coated layer. After finding the dispersion relationships for the layered media including the metal–dielectric composite waveguide, we can determine a solution for its existance in a complex domain. By inscribing a periodic grating structure in the dielectric layer of the metal–dielectric composite waveguide, we experimentally verify the coupling of incident light on the metal–dielectric composite waveguide structure and propose its application for use as a wavelength-band selection filter.

© 2010 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(230.7408) Optical devices : Wavelength filtering devices

History
Original Manuscript: August 17, 2009
Revised Manuscript: October 17, 2009
Manuscript Accepted: November 6, 2009
Published: November 19, 2009

Citation
Yongjun Lim, Seyoon Kim, Junghyun Park, Hwi Kim, and Byoungho Lee, "Analysis of the coupling of light into a metal-dielectric composite waveguide structure and its application for use as a wavelength-band selection filter," Appl. Opt. 49, A23-A29 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-7-A23


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131-314(2005). [CrossRef]
  2. Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A 24, 3547-3553(2007). [CrossRef]
  3. S. Maier and H. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
  6. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15, 209-221 (2009).
  7. S. Park, G. Lee, S. Song, C. Oh, and P. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870-1872 (2003). [CrossRef]
  8. Y. Lim, S. Chung, S. Kim, S. Han, and B. Lee, “Wavelength-band selection filter based on surface plasmon resonance and phase conjugation holography,” IEEE Photon. Technol. Lett. 18, 2532-2534 (2006).
  9. Z. Wu, J. Haus, Q. Zhan, and R. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics 3, 103-108 (2008).
  10. S. Maruo, O. Nakamura, and S. Kawata, “Evanescent-wave holography by use of surface-plasmon resonance,” Appl. Opt. 36, 2343-2346 (1997). [CrossRef]
  11. G. Wang, T. Sugiura, and S. Kawata, “Holography with surface-plasmon-coupled waveguide modes,” Appl. Opt. 40, 3649-3653 (2001). [CrossRef]
  12. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31, 2613-2615(2006). [CrossRef]
  13. Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, “Interference of surface plasmon waves and plasmon coupled waveguide modes for the patterning of thin film,” IEEE J. Quantum Electron. 44, 305-311 (2008). [CrossRef]
  14. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577-588 (1978). [CrossRef]
  15. K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, “Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam,” Opt. Express 13, 8866-8874 (2005). [CrossRef]
  16. Y. L. Long, and E. K. N. Yung, “Kuhn algorithm: ultraconvenient solver to complex polynomial and transcendental equations without initial value selection,” Int. J. RF Microwave Comput.-Aided Eng. 12, 540-547 (2002).
  17. Y. Lim, S. Kim, and B. Lee, “Dispersion relation and its solution using Kuhn algorithm in stratified media accompanying with surface plasmon resonance,” in Pacific Rim Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper WF3-3.
  18. L. Delves and J. Lyness, “A numerical method for locating the zeros of an analytic function,” Math. Comput. 21, 543-560(1967). [CrossRef]
  19. T.-Y. Li, “On locating all zeros of an analytic function within a bounded domain by a revised Delves/Lyness method,” Siam (Soc. Ind. Appl. Math.) J. Numer. Anal. 20, 865-871(1983).
  20. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818(1981). [CrossRef]
  21. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  22. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019-1023 (1996). [CrossRef]
  23. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  24. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865-2875 (2001). [CrossRef]
  25. Q. Cao, P. Lalanne, and J. P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A 19, 335-338 (2002). [CrossRef]
  26. H. Kim, I. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24, 2313-2327 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited