OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 49, Iss. 7 — Mar. 1, 2010
  • pp: A30–A35

Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm

Dawoon Choi, Yongjun Lim, Sookyoung Roh, Il-Min Lee, Jaehoon Jung, and Byoungho Lee  »View Author Affiliations

Applied Optics, Vol. 49, Issue 7, pp. A30-A35 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A metal slit array arranged along a semicircular surface achieving subwavelength optical beam focusing along the lateral direction is proposed. Taking into consideration surface plasmon polaritons that pass through a metal slit array, we design the array with a curvature. By use of a genetic algorithm, the size of the metal slit and the corresponding curvature are to be determined. Based on our metal slit array configuration, the full width at half-maximum can be achieved on a subwavelength scale.

© 2010 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

Original Manuscript: August 13, 2009
Revised Manuscript: November 19, 2009
Manuscript Accepted: November 21, 2009
Published: December 14, 2009

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Dawoon Choi, Yongjun Lim, Sookyoung Roh, Il-Min Lee, Jaehoon Jung, and Byoungho Lee, "Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm," Appl. Opt. 49, A30-A35 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782(1994). [CrossRef] [PubMed]
  3. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schoenle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154-4162 (2008). [CrossRef] [PubMed]
  4. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, and P. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009). [CrossRef]
  5. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, “Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings,” Appl. Phys. Lett. 92, 013103 (2008). [CrossRef]
  6. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927-929 (2007). [CrossRef] [PubMed]
  7. R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102, 207402 (2009). [CrossRef] [PubMed]
  8. X. B. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324(2006). [CrossRef] [PubMed]
  9. W. M. Saj, “Light focusing on a stack of metal-insulator-metal waveguides sharp edge,” Opt. Express 17, 13615-13623(2009). [CrossRef] [PubMed]
  10. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815-6820(2005). [CrossRef] [PubMed]
  11. Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004). [CrossRef]
  12. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235-238 (2009). [CrossRef]
  13. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  15. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933-1938 (2005). [CrossRef] [PubMed]
  16. R. K. Kupka, Y. Chen, F. Rousseaux, A. M. Haghirigosnet, and H. Launois, “Properties of electromagnetic-fields in x-ray lithographic masks - guided modes and beam-propagation calculus,” J. Vac. Sci. Technol. B 11, 667-680(1993). [CrossRef]
  17. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young's double-slit experiment,” Nature Nanotechnol. 2, 426-429 (2006). [CrossRef]
  18. H. F. Shi, X. G. Luo, and C. L. Du, “Young's interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321-11327 (2007). [CrossRef] [PubMed]
  19. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature Phys. 2, 551-556 (2006). [CrossRef]
  20. Z. Michalewicz, Genetic Algorithms Plus Data Structures Equal Evolution Programs (Springer-Verlag, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited