OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 8 — Mar. 10, 2010
  • pp: 1378–1387

Long-term stability in continuous wave cavity ringdown spectroscopy experiments

Haifeng Huang and Kevin K. Lehmann  »View Author Affiliations


Applied Optics, Vol. 49, Issue 8, pp. 1378-1387 (2010)
http://dx.doi.org/10.1364/AO.49.001378


View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Allan variance has been used to characterize the slow drift of a near-IR distributed feedback laser-based continuous wave cavity ringdown spectroscopy (CW-CRDS) system. Long-term drift in the cavity loss rate, highly correlated with changes in ambient pressure but not temperature, is observed. With differential measurement of on- and off-peak decay rates, the drift between them largely cancels out, but some residual drift remains if the lasers are detuned more than a few hundred megahertz from each other. A sensitivity to bulk cavity loss ( 1 σ ) of 4.4 × 10 12 cm 1 has been obtained during an optimum integration time of 30   min with our CW-CRDS setup, which corresponds to the methane detection limit ( 3 σ ) in N 2 of 0.24 parts in 10 9 by volume (ppbv) at 20 Torr or 29 parts in 10 12 by volume (pptv) at 760 Torr pressure. The stability of our system is demonstrated by measuring sub-ppbv methane in N 2 at 760 Torr through recording the spectrum of methane lines with our setup.

© 2010 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(120.1880) Instrumentation, measurement, and metrology : Detection
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: December 1, 2009
Revised Manuscript: January 18, 2010
Manuscript Accepted: February 5, 2010
Published: March 8, 2010

Citation
Haifeng Huang and Kevin K. Lehmann, "Long-term stability in continuous wave cavity ringdown spectroscopy experiments," Appl. Opt. 49, 1378-1387 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-8-1378


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  2. K.Busch and M.Busch, eds., Cavity Ringdown Spectroscopy--An Ultratrace-Absorption Measurement Technique, ACS Symposium Series (American Chemical Society, 1999), Vol. 720. [CrossRef]
  3. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for Physical Sciences, 2nd ed. (McGraw-Hill, 1992).
  4. K. K. Lehmann and H. Huang, “Optimal signal processing in cavity ring-down spectroscopy,” in Frontiers of Molecular Spectroscopy, J. Laane, ed. (Elsevier, 2008). Chap. 18, pp. 623-657.
  5. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966). [CrossRef]
  6. H. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15, 8745-8759 (2007). [CrossRef] [PubMed]
  7. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131-139 (1993). [CrossRef]
  8. D. D. Nelson, B. McManusa, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325-3335 (2004). [CrossRef]
  9. D. V. Land, A. P. Levick, and J. W. Hand, “The use of Allan deviation for the measurement of the noise and drift performance of microwave radiometers,” Meas. Sci. Technol. 18, 1917-1928 (2007). [CrossRef]
  10. J. M. Langridge, S. M. Ball, A. J. L. Shillings, and R. L. Jones, “A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection,” Rev. Sci. Instrum. 79, 123110 (2008). [CrossRef]
  11. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85-94 (2009). [CrossRef]
  12. J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, “Trace moisture detection using continuous-wave cavity ring-down spectroscopy,” Anal. Chem. 75, 4599-4605 (2003). [CrossRef] [PubMed]
  13. H. Huang and K. K. Lehmann, “Effects of birefringence and polarization dependent loss of supermirrors in cavity ring-down spectroscopy,” Appl. Opt. 47, 3817-3827 (2008). [CrossRef] [PubMed]
  14. H. Huang and K. K. Lehmann, “Noise caused by finite extinction ratio of light modulator in CW cavity ring-down spectroscopy,” Appl. Phys. B 94, 355-366 (2009). [CrossRef]
  15. We obtained this information from Hamamatsu Photonics.
  16. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, B. M., B. L. R., M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectr. Rad. Trans. 96, 139-204 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited