OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 8 — Mar. 10, 2010
  • pp: 1446–1458

Determination of tropospheric aerosol characteristics by spectral measurements of solar radiation using a compact, stand-alone spectroradiometer

Naohiro Manago and Hiroaki Kuze  »View Author Affiliations

Applied Optics, Vol. 49, Issue 8, pp. 1446-1458 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a method for characterizing atmospheric properties from ground-based, spectral measurements of direct and scattered solar radiation under clear sky conditions. A compact spectroradiometer is employed for radiation measurement in the wavelength range between 350 and 1050 nm with a resolution of 10 nm . Spectral matching of measured and simulated spectra yields a set of optical parameters that describe optical characteristics of tropospheric aerosols. We utilize the radiative transfer code MODTRAN4 for constructing realistic atmospheric models. Details of the system calibration, analysis procedure, and the results of its performance test are described.

© 2010 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: November 4, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 5, 2010
Published: March 9, 2010

Naohiro Manago and Hiroaki Kuze, "Determination of tropospheric aerosol characteristics by spectral measurements of solar radiation using a compact, stand-alone spectroradiometer," Appl. Opt. 49, 1446-1458 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis (Cambridge University Press, 2007).
  2. R. M. Harrison and J. Yin, “Particulate matter in the atmosphere: which particle properties are important for its effects on health?,” Sci. Total Environ. 249(1-3), 85-101(2000).
  3. T. Nakajima, G. Tonna, R. Rao, P. Boi, Y. Kaufman, and B. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate polydispersions,” Appl. Opt. 35, 2672-2686 (1996). [CrossRef]
  4. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET--a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1-16 (1998). [CrossRef]
  5. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006). [CrossRef]
  6. T. Takamura and T. Nakajima, “Overview of SKYNET and its activities,” Opt. Pura Apl. 37, 3303-3308 (2004).
  7. F. J. Olmo, A. Cazorla, L. Alados-Arboledas, M. A. López-Álvarez, J. Hernández-Andrés, and J. Romero, “Retrieval of the optical depth using an all-sky CCD camera,” Appl. Opt. 47, H182-H189 (2008). [CrossRef]
  8. A. Kreuter, M. Zangerl, M. Schwarzmann, and M. Blumthaler, “All-sky imaging: a simple, versatile system for atmospheric research,” Appl. Opt. 48, 1091-1097 (2009). [CrossRef]
  9. N. Kouremeti, A. Bais, S. Kazadzis, M. Blumthaler, and R. Schmitt, “Charge-coupled device spectrograph for direct solar irradiance and sky radiance measurements,” Appl. Opt. 47, 1594-1607 (2008). [CrossRef]
  10. C. Bassani, V. Estellés, M. Campanelli, R. M. Cavalli, and J. A. Martínez-Lozano, “Performance of a FieldSpec spectroradiometer for aerosol optical depth retrieval: method and preliminary results,” Appl. Opt. 48, 1969-1978 (2009). [CrossRef]
  11. P. Zieger, T. Ruhtz, R. Preusker, and J. Fischer, “Dual-aureole and Sun spectrometer system for airborne measurements of aerosol optical properties,” Appl. Opt. 46, 8542-8552 (2007). [CrossRef]
  12. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, and L. S. Jeong, “MODTRAN4 version 2: Radiative transfer modeling,” Proc. SPIE 4381, 455-459(2001).
  13. B. Schmid and C. Wehrli, “Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp,” Appl. Opt. 34, 4500-4512 (1995). [CrossRef]
  14. F. Kasten and A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735-4738 (1989). [CrossRef]
  15. R. L. Kurucz, “The solar irradiance by computation,” in Proceedings of the 17th Annual Conference on Atmospheric Transmission Models, G. P. Anderson, R. H. Picard, and J. H. Chetwind, eds. (1995), pp. 333-334.
  16. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988). [CrossRef]
  17. R. G. Isaacs, W.-C. Wang, R. D. Worsham, and S. Goldenberg, “Multiple scattering LOWTRAN and FASCODE models,” Appl. Opt. 26, 1272-1281 (1987). [CrossRef]
  18. C. Levoni, M. Cervino, R. Guzzi, and F. Torricella, “Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes,” Appl. Opt. 36, 8031-8041 (1997). [CrossRef]
  19. World Meteorological Organization, A Preliminary Cloudless Standard Atmosphere for Radiation Computation, WCP-112, WMO/TD-24 (1986).
  20. T. Takemura, T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, “Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model,” J. Clim. 15, 333-352 (2002). [CrossRef]
  21. S. Fukagawa, H. Kuze, G. Bagtasa, S. Naito, M. Yabuki, T. Takamura, and N. Takeuchi, “Characterization of seasonal variation of tropospheric aerosols in Chiba, Japan,” Atmos. Environ. 40, 2160-2168 (2006).
  22. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in east Asia,” J. Geophys. Res. 106, 18345-18359 (2001). [CrossRef]
  23. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505-1509 (1980). [CrossRef]
  24. P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust-like aerosols,” J. Aerosol Sci. 38, 995-1014(2007). [CrossRef]
  25. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University Press, 2002).
  26. P. Yang and K. N. Liou, “Geometric-optics--integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996). [CrossRef]
  27. F. James, MINUIT--Function Minimization and Error Analysis, CERN Program Library Long Writeup D506 (CERN, 1994).
  28. E. G. Moody, M. D. King, S. Platnick, C. B. Schaaf, and G. Feng, “Spatially complete global spectral surface albedos: Value-added datasets derived from terra modis land products,” IEEE Trans. Geosci. Remote Sens. 43, 144-158(2005).
  29. P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. O. V. Lundell, and H. Saari, “The Ozone Monitoring Instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1093-1101(2006).
  30. D. L. Wu, R. T. Austin, M. Deng, S. L. Durden, A. J. Heymsfield, J. H. Jiang, A. Lambert, J.-L. Li, N. J. Livesey, G. M. McFarquhar, J. V. Pittman, G. L. Stephens, S. Tanelli, D. G. Vane, and D. E. Waliser, “Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets,” J. Geophys. Res. 114 (2009). [CrossRef]
  31. S. Y. Kotchenova, E. F. Vermote, R. Levy, and A. Lyapustin, “Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study,” Appl. Opt. 47, 2215-2226 (2008). [CrossRef]
  32. G. H. Kaplan, “NOVAS,” Bull. Am. Astron. Soc. 22, 930-931(1990).
  33. W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the retrieval of albedo from space using semiempirical BRDF models,” IEEE Trans. Geosci. Remote Sens. 38, 977-998(2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited