OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1489–1493

Optical temperature measurements of silicon microbridge emitters

Maksim Shpak, Lauri Sainiemi, Maija Ojanen, Petri Kärhä, Martti Heinonen, Sami Franssila, and Erkki Ikonen  »View Author Affiliations

Applied Optics, Vol. 49, Issue 9, pp. 1489-1493 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microbridges are miniature suspended structures fabricated in silicon. Passing a current through the microbridge can heat it up to the point of incandescence. A glowing microbridge can be used as a wideband light source. This study presents a method for optical measurement of the temperature of a microbridge. Spectroscopic measurements of microbridges are optically challenging, because the multilayer structures cause interference effects. To determine the temperature from the emitted spectrum, the emissivity was modeled with thin-film Fresnel equations. Temperatures of 500 1100 ° C were obtained from the measured spectra at different levels of applied power. The range is limited by the sensitivity of the detectors at lower power levels and by the stability of the bridge at higher levels. Results of the optical measurements were compared with contact temperature measurements made with a microthermocouple in the same temperature range. The results of the two methods agree within 100 K .

© 2010 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(120.6780) Instrumentation, measurement, and metrology : Temperature
(230.4000) Optical devices : Microstructure fabrication
(230.6080) Optical devices : Sources
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optical Devices

Original Manuscript: August 26, 2009
Revised Manuscript: February 15, 2010
Manuscript Accepted: February 23, 2010
Published: March 10, 2010

Maksim Shpak, Lauri Sainiemi, Maija Ojanen, Petri Kärhä, Martti Heinonen, Sami Franssila, and Erkki Ikonen, "Optical temperature measurements of silicon microbridge emitters," Appl. Opt. 49, 1489-1493 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Blomberg, O. Rusanen, K. Keranen, and A. Lehto, “A silicon microsystem-miniaturised infrared spectrometer,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1257-1258. [CrossRef]
  2. T. Corman, E. Kälvesten, M. Huiku, K. Weckström, P. T. Meriläinen, and G. Stemme, “An optical IR-source and CO2-chamber system for CO2 measurements,” J. Microelectromech. Syst. 9, 509-516 (2000). [CrossRef]
  3. P. Ohlckers, A. M. Ferber, V. K. Dmitriev, and G. Kirpilenko, “A photoacoustic gas sensing silicon microsystem,” in 11th International Conference on Solid State Sensors and Actuators. Transducers '01 (Springer, 2001), Vol. 1, pp. 780-783.
  4. J. Tu, D. Howard, S. D. Collins, and R. L. Smith, “Micromachined, silicon filament light source for spectrophotometric microsystems,” Appl. Opt. 42, 2388-2397 (2003). [CrossRef] [PubMed]
  5. P. Fürjes, Zs. Vizváry, M. Ádám, A. Morrissey, Cs. Dücső, and I. Bársony, “Thermal investigation of micro-filament heaters,” Sens. Actuators A, Phys. 99, 98-103 (2002). [CrossRef]
  6. H. Yuasa, S. Ohya, S. Karasawa, K. Akimoto, S. Kodato, and K. Takahashi, “Single crystal silicon micromachined pulsed infrared light source,” in International Conference on Solid State Sensors and Actuators. TRANSDUCERS '97 (IEEE, 1997), Vol. 2, pp. 1271-1274. [CrossRef]
  7. J. Lee and W. P. King, “Microcantilever hotplates: design, fabrication and characterization,” Sens. Actuators A, Phys. 136, 291-298 (2007). [CrossRef]
  8. C. H. Mastrangelo, J. H. Yeh, and R. S. Muller, “Electrical and optical characteristics of vacuum-sealed polysilicon microlamps,” IEEE Trans. Electron. Devices 39, 1363-1375 (1992). [CrossRef]
  9. L. Sainiemi, K. Grigoras, I. Kassamakov, K. Hanhijärvi, J. Aaltonen, J. Fan, V. Saarela, E. Hæggström, and S. Franssila, “Fabrication of thermal microbridge actuators and characterization of their electrical and mechanical responses,” Sens. Actuators A, Phys. 149, 305-314 (2009). [CrossRef]
  10. J. Kim, S. G. Kim, J. G. Koo, T. M. Roh, H. S. Park, and D. Y. Kim, “Characteristics of dynamic resistance in a heavily doped silicon semiconductor resistor,” Int. J. Electron. 86, 269-279 (1999). [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 1999).
  12. B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer 19, 558-565 (2005). [CrossRef]
  13. G. E. Jellison, Jr., and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758-3761 (1994). [CrossRef]
  14. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561-601 (1980). [CrossRef]
  15. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205-1209 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited