OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1494–1502

Reconstruction and analysis of pulsed thermographic sequences for nondestructive testing of layered materials

J. C. Ramirez-Granados, G. Paez, and M. Strojnik  »View Author Affiliations


Applied Optics, Vol. 49, Issue 9, pp. 1494-1502 (2010)
http://dx.doi.org/10.1364/AO.49.001494


View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a heat transfer model to reconstruct pulsed thermographic data of layered objects. One of its salient features is its incorporation of normalized variables for a generalized approach to such problems. Additionally, we establish a methodology to determine the spatial and temporal limits of the data reconstruction process. Moreover, we describe an effective nondestructive technique for detecting and characterizing internal defects in multilayer objects. This inspection technique is verified on the construction of physical models and their examination. The depth, transverse dimensions, and front-surface shape of the detected defects are straightforwardly obtained from 3D depthgrams.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.3080) Imaging systems : Infrared imaging
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(110.4155) Imaging systems : Multiframe image processing

ToC Category:
Image Processing

History
Original Manuscript: August 31, 2009
Revised Manuscript: January 30, 2010
Manuscript Accepted: February 3, 2010
Published: March 10, 2010

Citation
J. C. Ramirez-Granados, G. Paez, and M. Strojnik, "Reconstruction and analysis of pulsed thermographic sequences for nondestructive testing of layered materials," Appl. Opt. 49, 1494-1502 (2010)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-9-1494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. P. Avdelidis, B. C. Hawtin, and D. P. Almond, “Transient thermography in the assessment of defects of aircraft composites,” NDT & E Int. 36, 433-439 (2003). [CrossRef]
  2. E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234-238(2007). [CrossRef]
  3. C. Ibarra-Castanedo and X. Maldague, “Defect depth retrieval from pulsed phase thermographic data on plexiglas and aluminum samples,” Proc. SPIE 5405, 348-356 (2004). [CrossRef]
  4. M. Strojnik and G. Paez, “Determination of temperature distributions with micrometer spatial resolution,” Opt. Eng. 46, 036401 (2007). [CrossRef]
  5. G. Busse, D. Wu, and W. Karpen, “Thermal wave imaging with phase sensitive modulated thermography,” J. Appl. Phys. 71, 3962-3965 (1992). [CrossRef]
  6. P. Cielo, “Pulsed photothermal evaluation of layered materials,” J. Appl. Phys. 56, 230-234 (1984). [CrossRef]
  7. X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, 2001).
  8. X. Maldague, A. Ziadi, and M. Klein, “Double pulse infrared thermography,” NDT & E Int. 37, 559-564 (2004). [CrossRef]
  9. G. Rieger, “Lockin and burst-phase thermography for NDE,” Quant. Infrared Thermography 3, 141-154 (2006). [CrossRef]
  10. G. Rieger, T. Zweschper, and G. Busse, “Lock-in thermography with eddy current excitation,” Quant. Infrared Thermography 1, 21-32 (2004).
  11. M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146-2152 (1982). [CrossRef] [PubMed]
  12. G. Paez and M. Strojnik, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 46, 141-145(2004). [CrossRef]
  13. M. Susa, H. D. Benitez, C. Ibarra-Castanedo, H. Loaiza, H. Bendada, and X. Maldague, “Phase contrast using a differentiated absolute contrast method,” Quant. Infrared Thermography 3, 219-230 (2006). [CrossRef]
  14. S. M. Shepard, J. R. Lhota, B. A. Rubadeux, T. Ahmed, and D. Wang, “Enhancement and reconstruction of thermographic data,” Proc. SPIE 4710, 531-535 (2002).
  15. D. A. Gonzalez, C. Ibarra-Castanedo, J. M. Lopez-Higuera, and X. Maldague, “New algorithm based on the Hough transform for the analysis of pulsed thermographic sequences,” NDT & E Int. 39, 617-621 (2006). [CrossRef]
  16. X. Maldague and S. Marineti, “Pulse phase infrared thermography,” J. Appl. Phys. 79, 2694-2698 (1996). [CrossRef]
  17. T. D'Orazio, C. Guaragnella, M. Leo, and P. Spagnolo, “Defect detection in aircraft composites by using a neural approach in the analysis of thermographic sequences,” NDT & E Int. 38, 665-673 (2005). [CrossRef]
  18. J. Sandoval, G. Paez, and M. Strojnik, “Heat transfer analysis of a dynamic infrared-to-visible converter,” Opt. Eng. 42, 3517-3523 (2003). [CrossRef]
  19. H. Carslaw and J. Jaeger, Conduction of Heat in Solids (Oxford Univ. Press, 1959).
  20. S. Lugin and U. Netzelmann, “A defect shape reconstruction algorithm for pulsed thermography,” NDT & E Int. 40, 220-228 (2007). [CrossRef]
  21. M. Branch, T. Coleman, and Y. Li, “A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems,” J. Sci. Comput. 21, 1-23 (1999).
  22. S. Lugin and U. Netzelmann, “An effective compression algorithm for pulsed thermography data,” NDT & E Int. 38, 485-490 (2005). [CrossRef]
  23. M. Omar, M. I. Hassan, K. Saito, and R. Alloo, “IR self-referencing thermography for detection of in-depth defects,” Infrared Phys. Technol. 46, 283-289 (2005). [CrossRef]
  24. M. S. Scholl, “Time and position varying infrared scene simulation,” Proc. SPIE 819, 297-301 (1987).
  25. M. S. Scholl, “Spatial and temporal effects due to target irradiation: a study,” Appl. Opt. 21, 1615-1620 (1982). [CrossRef] [PubMed]
  26. M. Omar, M. I. Hassan, and K. Saito, “Optimizing thermography depth probing with a dynamic thermal point spread function,” Infrared Phys. Technol. 46, 506-514 (2005). [CrossRef]
  27. M. S. Scholl, “Thermal considerations in the design of a dynamic IR source,” Appl. Opt. 21, 660-667 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited