Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatially multiplexed multi-input–multi-output optical imaging system in a turbid, turbulent atmosphere

Not Accessible

Your library or personal account may give you access

Abstract

Active optical imaging is preferred over radio frequency counterparts due to its higher resolution, faster area search rate, and relatively easier learning and interpretation of the image by a human observer. However, in imaging through atmosphere, one should consider dispersive effects of multiple scatterings and turbulence-induced wave perturbations, which give rise to intensity fluctuations and wavefront distortions. All these phenomena broaden and distort the spatial impulse response known as the point spread function (PSF). In this paper, a spatially multiplexed multi-input–multi-output imaging system design, inspired by multispot diffuse indoor communications configuration first introduced by Yun and Kavehrad [IEEE International Conference Selected Topics in Wireless Communications (IEEE, 1992), pp 262–265], is presented. At the transmitter, a computer-generated holographic beam splitter is used to generate arrays of beamlets, providing a faster area search rate and a uniformly distributed illumination over the entire target area. Then, at the receiver, an array of photodetectors is used to collect the reflected rays. While a Monte Carlo ray-tracing algorithm developed at Pennsylvania State University, Center for Information and Communications Research (CICTR), is used to model imaging in multiple-scattering turbid media, phase screens are employed to simulate turbulence-induced wavefront distortions. Hence, a comprehensive framework is exploited that takes into account possible sources of degradation. Using this framework, system performance is analyzed under different meteorological conditions. Restoration techniques such as adaptive-optics corrections, blind deconvolution, and time gating are used to improve the contrast and enhance the sharpness and resolution of the images.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of the performance of a wireless optical multi-input to multi-output communication system

Denis Bushuev and Shlomi Arnon
J. Opt. Soc. Am. A 23(7) 1722-1730 (2006)

Atmospheric Turbulence in Optical Surveillance Systems

Melvin M. Weiner
Appl. Opt. 6(11) 1984-1991 (1967)

Crosswind sensing from optical-turbulence-induced fluctuations measured by a video camera

Omer Porat and Joseph Shapira
Appl. Opt. 49(28) 5236-5244 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved