OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 49, Iss. 9 — Mar. 20, 2010
  • pp: 1549–1554

Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air–water mixture flows using digital holography

Lei Tian, Nick Loomis, José A. Domínguez-Caballero, and George Barbastathis  »View Author Affiliations

Applied Optics, Vol. 49, Issue 9, pp. 1549-1554 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1021 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a digital in-line holographic imaging system for measuring the size and three-dimensional position of fast-moving bubbles in air–water mixture flows. The captured holograms are numerically processed by performing a two-dimensional projection followed by local depth estimation to quickly and efficiently obtain the size and position information of multiple bubbles simultaneously. Statistical analysis on measured bubble size distributions shows that they follow lognormal or gamma distributions.

© 2010 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(280.2490) Remote sensing and sensors : Flow diagnostics
(090.1995) Holography : Digital holography
(100.4995) Image processing : Pattern recognition, metrics

ToC Category:

Original Manuscript: November 4, 2009
Revised Manuscript: February 18, 2010
Manuscript Accepted: February 22, 2010
Published: March 11, 2010

Lei Tian, Nick Loomis, José A. Domínguez-Caballero, and George Barbastathis, "Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography," Appl. Opt. 49, 1549-1554 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Naqwi, F. Durst, and G. Kraft, “Sizing of submicrometer particles using a phase-Doppler system,” Appl. Opt. 30, 4903-4913 (1991). [CrossRef]
  2. R. J. Adrian, “Twenty years of particle image velocimetry,” Exp. Fluids 39, 159-169 (2005). [CrossRef]
  3. K. Mishima and T. Hibiki, “Development of high-frame-rate neutron radiography and quantitative measurement method for multiphase flow research,” Nucl. Eng. Des. 184, 183-201(1998). [CrossRef]
  4. C. Brücker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480-1492 (1997). [CrossRef]
  5. F. Pereira, M. Gharib, D. Dabiri, and D. Modarress, “Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Application to bubbly flows,” Exp. Fluids 29, S78-S84 (2000). [CrossRef]
  6. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  7. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827-833 (2003). [CrossRef]
  8. J. A. Dominguez-Caballero and G. Barbastathis, “Stability of the digital holographic inverse problem as a function of particle density,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2008), paper PDPJMA6.
  9. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697-7708 (2005). [CrossRef]
  10. J. A. Dominguez-Caballero, N. Loomis, W. Li, Q. Hu, J. Milgram, G. Barbastathis, and C. Davis, “Advances in plankton imaging using digital holography,” in Computational Optical Sensing and Imaging (Optical Society of America, 2007), paper DMB5.
  11. J. H. Milgram and W. Li, “Computational reconstruction of images from holograms,” Appl. Opt. 41, 853-864 (2002). [CrossRef]
  12. D. Carl, B. Kemper, G. Wernicke, and G. Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  13. J. A. Dominguez-Caballero, “Digital holographic imaging of aquatic species,” Master's thesis (Massachusetts Institute of Technology, 2006).
  14. J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009). [CrossRef]
  15. S. Satake, H. Kanamori, T. Kunugi, K. Sato, T. Ito, and K. Yamamoto, “Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry,” Appl. Opt. 46, 538-543 (2007). [CrossRef]
  16. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071-13079 (2009). [CrossRef]
  17. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895-5908(2006). [CrossRef]
  18. W. Li, N. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054-3062 (2007). [CrossRef]
  19. M. L. Tachiki, M. Itoh, and T. Yatagai, “Simultaneous depth determination of multiple objects by focus analysis in digital holography,” Appl. Opt. 47, D144-D153 (2008). [CrossRef]
  20. D. Reynolds and R. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process. 3, 72-83 (1995). [CrossRef]
  21. J. Rissanen, “Stochastic complexity and modeling,” Ann. Stat. 14, 1080-1100 (1986). [CrossRef]
  22. NVidia, http://www.nvidia.com/object/cuda_home_new.html.
  23. J. Varley, “Submerged gas-liquid jets--bubble-size prediction,” Chem. Eng. Sci. 50, 901-905 (1995). [CrossRef]
  24. H. Chanson, “Air bubble entrainment in open channels: flow structure and bubble size distributions,” Int. J. Multiphase Flow 23, 193-203 (1997). [CrossRef]
  25. R. B. D'Agostino and M. A. Stephens, Goodness-of-Fit Techniques, Vol. 68 of Statistics, Textbooks and Monographs (Marcel-Dekker, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited